2. [10 points]

Kathy puts a very large marshmallow in the microwave for forty seconds and watches as it inflates. Let $m(t)$ be the rate of change of the volume of the marshmallow, in $\mathrm{cm}^{3} / \mathrm{sec}$, t seconds after Kathy puts it in the microwave. The graph of $y=m(t)$ is shown to the right.

a. [2 points] Write a definite integral equal to the total change in volume, in cm^{3}, of the marshmallow while in the microwave. (You do not need to evaluate the integral.)

Answer:

b. [3 points] Estimate your integral from part (a) using a right-hand sum with $\Delta t=10$. Be sure to write out all of the terms in the sum.

Abstract

Answer: c. [5 points] Assume that throughout its time in the microwave, the marshmallow is a cylinder. After 30 seconds in the microwave, the marshmallow is a cylinder with radius 4.5 cm and height 11 cm . At that moment, the height is increasing at $0.08 \mathrm{~cm} / \mathrm{sec}$. How fast is the radius of the marshmallow increasing at that moment? Recall that the volume V of a cylinder of radius r and height h is $V=\pi r^{2} h$, and remember to include units.

