5. [9 points] The graph of a portion of y = h(x) is shown below.

Note: The portion of the graph of h(x) between x = 4 and x = 5 is part of a circle of radius 1 centered at the point (5, 0).

- Let H(x) be the <u>continuous</u> antiderivative of h(x) with H(0) = 2.
 - **a**. Complete the following table with the <u>exact</u> values of H(x).

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
H(x)						2					

- **b**. On the axes below, sketch the graph of y = H(x). Be sure that you pay close attention to each of the following:
 - where H(x) is and is not differentiable
 - the values of H(x) from the table above
 - the sign of H(x), where H(x) is increasing/decreasing/constant, and the concavity of H(x)

y· ·3 · $\cdot 2$ ·1· -2 $\mathbf{2}$ -31 3 -15-:4 4 -1 -2-3 -4