1. [11 points] The table below gives several values of a function $f(x)$ and its derivative. Assume that both $f(x)$ and $f^{\prime}(x)$ are defined and differentiable for all x.

x	0	1	2	3	4	5	6
$f(x)$	0	3	4	2	-1	-3	5
$f^{\prime}(x)$	4	2	-1	-5	-2	7	9
$f^{\prime \prime}(x)$	-1	-3	-5	0	4	3	1

Compute each of the following. Do not give approximations. If it is not possible to find the value exactly, write NOT POSSIBLE
a. $[2$ points $]$ Find $\int_{0}^{4} f^{\prime \prime}(x) d x$.

Solution: By the Fundamental Theorem of Calculus,

$$
\int_{0}^{4} f^{\prime \prime}(x) d x=f^{\prime}(4)-f^{\prime}(0)=-2-4=-6 .
$$

Answer: $\int_{0}^{4} f^{\prime \prime}(x) d x=\square-6$
b. [2 points] Find $\int_{2}^{5}(3 f(x)+1) d x$.

Solution: In order to evaluate this exactly, we would need to know an antiderivative of $f(x)$. Since we don't know one, this is not possible to evaluate exactly.

$$
\text { Answer: } \int_{2}^{5}(3 f(x)+1) d x=\underline{\text { NOT POSSIBLE }}
$$

c. [3 points] Find the average value of $4 f^{\prime}(x)+x$ on the interval $[1,6]$.

Solution: The average value can be computed as an integral. Since an antiderivative of $4 f^{\prime}(x)+x$ is $4 f(x)+\frac{1}{2} x^{2}$, we can compute the exact value of this integral with the Fundamental Theorem of Calculus:

$$
\frac{1}{6-1} \int_{1}^{6}\left(4 f^{\prime}(x)+x\right) d x=\frac{1}{5}\left(\left(4 f(6)+\frac{1}{2} 6^{2}\right)-\left(4 f(1)+\frac{1}{2} 1^{2}\right)\right)=5.1
$$

Answer:
d. [4 points] Assuming that $f(x)$ is an odd function, find $\int_{-3}^{3} f(x) d x$ and $\int_{-3}^{3} f^{\prime}(x) d x$.

Solution: Note that

$$
\int_{-3}^{3} f(x) d x=\int_{-3}^{0} f(x) d x+\int_{0}^{3} f(x) d x
$$

and since $f(x)$ is an odd function, the two integrals on the right cancel out, leaving us with 0 .
Also, since $f(x)$ is odd, we have $f(-3)=-f(3)$, and hence by the Fundamental Theorem of Calculus,

$$
\int_{-3}^{3} f^{\prime}(x) d x=f(3)-f(-3)=f(3)-(-f(3))=2 f(3)=4 .
$$

Answer: $\int_{-3}^{3} f(x) d x=\square \quad 0 \quad$ and $\int_{-3}^{3} f^{\prime}(x) d x=$ \qquad

