- 10. [11 points] In each situation, circle <u>all</u> of the statements I-VI which <u>must</u> be true. If none of the statements must be true, circle VII. NONE OF THE ABOVE.
 - **a.** [3 points] Let $f(x) = qe^{rx} + s$, where q, r, and s are negative constants.
 - I. f(0) > 0
 - II. f'(0) > 0
 - III. $\lim_{x \to \infty} f(x) = s$
 - IV. $\lim_{x \to \infty} f(x) = 0$
 - $V. \qquad \lim_{x \to -\infty} f(x) = s$
 - VI. $\lim_{x \to -\infty} f(x) = 0$
 - VII. NONE OF THE ABOVE
 - **b.** [4 points] Let $g(x) = a \ln(bx)$, where a and b are positive constants.
 - I. The domain of g(x) is the interval $(0, \infty)$.
 - II. The graph of g(x) has a horizontal asymptote.
 - III. The graph of g(x) has a vertical asymptote.
 - IV. $g^{-1}(0) = b^{-1}$
 - $V. g'(x) = \frac{a}{bx}$
 - VI. $\int g(x) dx = ax(\ln(bx) 1) + C$
 - VII. NONE OF THE ABOVE
 - c. [4 points] Let $z(t) = A \sin t + B$, where A and B are positive constants.
 - I. The maximum value of z(t) on its domain is A + B.
 - II. z(t) has an inflection point at t = 0.
 - III. If h(t) = z(z(t)), then $h'(0) = A^2 \cos B$.
 - IV. $\int_0^{2\pi} z(t) dt = 0$
 - $V. \int_0^{\pi} z(t) dt = 2A + \pi B$
 - VI. $\int_{1}^{2} z(t) dt = \int_{1+2\pi}^{2+2\pi} z(t) dt$
 - VII. NONE OF THE ABOVE