10. [11 points] In each situation, circle all of the statements I-VI which must be true. If none of the statements must be true, circle VII. none of the above.
a. [3 points] Let $f(x)=q e^{r x}+s$, where q, r, and s are negative constants.
I. $f(0)>0$
II. $f^{\prime}(0)>0$
III. $\lim _{x \rightarrow \infty} f(x)=s$
IV. $\lim _{x \rightarrow \infty} f(x)=0$
V. $\lim _{x \rightarrow-\infty} f(x)=s$
VI. $\lim _{x \rightarrow-\infty} f(x)=0$
VII. NONE OF THE ABOVE
b. [4 points] Let $g(x)=a \ln (b x)$, where a and b are positive constants.
I. The domain of $g(x)$ is the interval $(0, \infty)$.
II. The graph of $g(x)$ has a horizontal asymptote.
III. The graph of $g(x)$ has a vertical asymptote.
IV. $g^{-1}(0)=b^{-1}$
V. $g^{\prime}(x)=\frac{a}{b x}$
VI. $\quad \int g(x) d x=a x(\ln (b x)-1)+C$
VII. NONE of the above
c. [4 points] Let $z(t)=A \sin t+B$, where A and B are positive constants.
I. The maximum value of $z(t)$ on its domain is $A+B$.
II. $\quad z(t)$ has an inflection point at $t=0$.
III. If $h(t)=z(z(t))$, then $h^{\prime}(0)=A^{2} \cos B$.
IV. $\int_{0}^{2 \pi} z(t) d t=0$
V. $\quad \int_{0}^{\pi} z(t) d t=2 A+\pi B$
VI. $\int_{1}^{2} z(t) d t=\int_{1+2 \pi}^{2+2 \pi} z(t) d t$
VII. NONE OF THE ABOVE
