2. [10 points]

Kathy puts a very large marshmallow in the microwave for forty seconds and watches as it inflates. Let $m(t)$ be the rate of change of the volume of the marshmallow, in $\mathrm{cm}^{3} / \mathrm{sec}$, t seconds after Kathy puts it in the microwave. The graph of $y=m(t)$ is shown to the right.

a. [2 points] Write a definite integral equal to the total change in volume, in cm^{3}, of the marshmallow while in the microwave. (You do not need to evaluate the integral.)

Answer:

$$
\int_{0}^{40} m(t) d t
$$

b. [3 points] Estimate your integral from part (a) using a right-hand sum with $\Delta t=10$. Be sure to write out all of the terms in the sum.
Solution: A right-hand sum from 0 to 40 with $\Delta t=10$ will involve the values at $t=10$, 20,30 , and 40:

$$
10 m(10)+10 m(20)+10 m(30)+10 m(40)=10(15+21+12+6)=540 .
$$

Since $m(t)$ has units of $\mathrm{cm}^{3} / \mathrm{sec}$ and t has units of sec , the integral has units of cm^{3}, which agrees with it being a change in volume.

Answer: $540 \mathrm{~cm}^{3}$
c. [5 points] Assume that throughout its time in the microwave, the marshmallow is a cylinder. After 30 seconds in the microwave, the marshmallow is a cylinder with radius 4.5 cm and height 11 cm . At that moment, the height is increasing at $0.08 \mathrm{~cm} / \mathrm{sec}$. How fast is the radius of the marshmallow increasing at that moment?
Recall that the volume V of a cylinder of radius r and height h is $V=\pi r^{2} h$, and remember to include units.
Solution: Differentiating both sides of the volume equation with respect to t yields

$$
\frac{d V}{d t}=2 \pi r h \frac{d r}{d t}+\pi r^{2} \frac{d h}{d t} .
$$

We are told that at this moment, $r=4.5, h=11$, and $\frac{d h}{d t}=0.08$. Further, since $m(t)=\frac{d V}{d t}$, we can read from the graph above that at $t=30$, we have $\frac{d V}{d t}=12$. Plugging these in, we have

$$
12=99 \pi \frac{d r}{d t}+1.62 \pi
$$

so solving for $\frac{d r}{d t}$ yields a rate of about $0.022 \mathrm{~cm} / \mathrm{sec}$.

