3. [11 points] For positive constants a and b, the potential energy of a particle is given by

$$
U(x)=a\left(\frac{5 b^{2}}{x^{2}}-\frac{3 b}{x}\right)
$$

Assume that the domain of $U(x)$ is the interval $(0, \infty)$.
a. [2 points] Find the asymptotes of $U(x)$. If there are none of a particular type, write NONE.

Solution: We can get a common denominator and write

$$
U(x)=a \frac{5 b^{2}-3 b x}{x^{2}} .
$$

We see that there is a vertical asymptote at $x=0$, where the denominator is zero, and a horizontal asymptote at $U=0$, since the degree of the denominator is greater than the degree of the numerator.

Answer: Vertical asymptote(s): $\quad x=0 \quad$ Horizontal asymptote(s): $\quad U=0$
b. [6 points] Find the x-coordinates of all local maxima and minima of $U(x)$ in the domain $(0, \infty)$. If there are none of a particular type, write none. You must use calculus to find and justify your answers. Be sure to provide enough evidence to justify your answers fully.

Solution: First we find critical points by looking at where $U^{\prime}(x)$ is undefined or zero. We have

$$
U^{\prime}(x)=a\left(-\frac{10 b^{2}}{x^{3}}+\frac{3 b}{x^{2}}\right)=a \frac{3 b x-10 b^{2}}{x^{3}} .
$$

There are no points in the domain of $U(x)$ where $U^{\prime}(x)$ is undefined, but $U^{\prime}(x)$ has a zero where $3 b x-10 b^{2}=0$, or $x=\frac{10 b}{3}$.
To classify this critical point, we can use the First or Second Derivative Test. We will use the Second Derivative Test here, so we compute

$$
U^{\prime \prime}(x)=a\left(\frac{30 b^{2}}{x^{4}}-\frac{6 b}{x^{3}}\right)=\frac{6 a b}{x^{4}}(5 b-x) .
$$

Since a, b, and x^{4} are always positive and $5 b-x$ is positive at $x=\frac{10 b}{3}$, we see that $U^{\prime \prime}\left(\frac{10 b}{3}\right)>0$, and hence $x=\frac{10 b}{3}$ is a local minimum.
There are no other critical poitns to consider, so there are no local maxima.

Answer: Local max(es) at $x=\quad$ NONE $\operatorname{Local} \min (\mathrm{s})$ at $x=\quad \overline{3}$
c. [3 points] Suppose $U(x)$ has an inflection point at $(6,-14)$. Find the values of a and b. Show your work, but you do not need to verify that this point is an inflection point.

Solution: We already found $U^{\prime \prime}(x)=\frac{6 a b}{x^{4}}(5 b-x)$, so we see that the only potential inflection point occurs at $x=5 b$, the only place in the domain of $U(x)$ where $U^{\prime \prime}(x)$ is zero or undefined. Hence $5 b=6$ or $b=1.2$.
Plugging in $x=6, b=1.2$, and $U=-14$ into the original equation for $U(x)$ yields

$$
-14=a\left(\frac{1}{5}-\frac{3}{5}\right)=-\frac{2 a}{5}
$$

and hence $a=35$.

Answer: $a=$ \qquad and $b=$

