4. [13 points] One of the ways Captain Christina likes to relax in her retirement is to go for long walks around her neighborhood. She has noticed that early every Tuesday morning, a truck delivers butter to a local bakery famous for its cookie dough. Consider the following functions:

- Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of butter.
- Let $K(b)$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter.
- Let $u(t)$ be the instantaneous rate, in pounds per hour, at which butter is being unloaded t hours after 4 am .

Assume that C, K, and u are invertible and differentiable.
a. [2 points] Interpret $K\left(C^{-1}(10)\right)=20$ in the context of this problem.

Use a complete sentence and include units.
Solution: If the bakery spends $\$ 10$ on butter, then it can make 20 cups of cookie dough.
b. [3 points] Interpret $\int_{5}^{12} K^{\prime}(b) d b=40$ in the context of this problem.

Use a complete sentence and include units.
Solution: 12 pounds of butter makes 40 cups more cookie dough than 5 pounds of butter does.
c. [2 points] Give a single mathematical equality involving the derivative of C which supports the following claim:
It costs the bakery approximately $\$ 0.70$ less to buy 14.8 pounds of butter than to buy 15 pounds of butter.

Answer:

$$
C^{\prime}(15)=3.5
$$

d. [3 points] Give a single mathematical equality which expresses the following claim:

The number of pounds of butter unloaded between 5 and 8 am is twice as many as the bakery needs to make 5000 cups of cookie dough.

Answer:

$$
\int_{1}^{4} u(t) d t=2 K^{-1}(5000)
$$

e. [3 points] Assume that $u(t)>0$ and $u^{\prime}(t)<0$ for $0 \leq t \leq 4$ and that $u(2)=800$.

Rank the following quantities in order from least to greatest by filling in the blanks below with the options I-IV.
I. 0
II. 800
III. $\int_{1}^{2} u(t) d t$
IV. $\quad \int_{2}^{3} u(t) d t$

Solution: Since $u(t)>0$, both integrals are greater than 0 . Since $u^{\prime}(t)<0, u(t)$ is a decreasing function. Estimating $\int_{1}^{2} u(t) d t$ with a right sum with one subdivision yields an underestimate of 800 , and likewise, estimating $\int_{2}^{3} u(t) d t$ with a left sum with one subdivision yields an overestimate of 800 .

$$
0 \ll \int_{2}^{3} u(t) d t<800<\int_{1}^{2} u(t) d t
$$

