

	d?	1) For what value(s) of q in the interval $[0, 100]$ is revenue maximized	(1
100	q =	Answer:	
	1		
		i) For what value(s) of q in the interval $[0, 100]$ is MR maximized?	(ii
60	a =	Answer:	
	1 -		
		i) For what value(s) of q in the interval $[0, 100]$ is profit maximized?	(iii)
80	a =	Answer:	
	9 -		
)	nized?	v) For what value(s) of q in the interval $[0, 100]$ is $MR - MC$ maxim	(iv
50	a =	Answer:	

- b. [2 points] David is planning to sell 5 tons of ice but is considering selling 35 tons instead.
 - (i) Would David's profit increase or decrease if he changed the amount of ice sold from 5 tons to 35 tons? (Circle one.)

```
INCREASE
```

- (ii) By how much would his profit increase or decrease? (Circle the one best estimate.)
 - \$1000 \$2000 \$4500 \$5250 \$6000
- c. [3 points] Let $\pi(q)$ be David's profit, in dollars, if he sells q tons of ice. Suppose that David would make a profit of \$4000 if he sold 95 tons of ice. Find an equation for the tangent line to the graph of $y = \pi(q)$ at q = 95.

Solution: The slope of the tangent line is given by $\pi'(95)$, which we can read off the graph as the difference between MR and MC at q = 95, or about -600. Since the line passes through the point (95, 4000), we therefore have the equation y = 4000-600(q-95).

Answer:

y = 4000 - 600(q - 95)

DECREASE