9. [9 points] With winter past and summer approaching, David is opening a business selling ice. Graphed below are his marginal revenue $M R$ (solid line) and marginal cost $M C$ (dashed line), in dollars per ton of ice.

a. [4 points] Carefully estimate the answer to each of the following based on the graphs above. You do not need to show your work.
(i) For what value(s) of q in the interval $[0,100]$ is revenue maximized?

Answer: $q=$ \qquad
(ii) For what value(s) of q in the interval $[0,100]$ is $M R$ maximized?

Answer: $q=$ \qquad
(iii) For what value(s) of q in the interval $[0,100]$ is profit maximized?

Answer: $q=$ \qquad
(iv) For what value(s) of q in the interval $[0,100]$ is $M R-M C$ maximized?

Answer: $q=$ \qquad
b. [2 points] David is planning to sell 5 tons of ice but is considering selling 35 tons instead.
(i) Would David's profit increase or decrease if he changed the amount of ice sold from 5 tons to 35 tons? (Circle one.)

INCREASE \quad DECREASE
(ii) By how much would his profit increase or decrease? (Circle the one best estimate.)

$$
\begin{array}{lllll}
\$ 1000 & \$ 2000 & \$ 4500 & \$ 5250 & \$ 6000
\end{array}
$$

c. [3 points] Let $\pi(q)$ be David's profit, in dollars, if he sells q tons of ice. Suppose that David would make a profit of $\$ 4000$ if he sold 95 tons of ice. Find an equation for the tangent line to the graph of $y=\pi(q)$ at $q=95$.
Solution: The slope of the tangent line is given by $\pi^{\prime}(95)$, which we can read off the graph as the difference between $M R$ and $M C$ at $q=95$, or about -600 . Since the line passes through the point $(95,4000)$, we therefore have the equation $y=4000-600(q-95)$.

