10. [5 points] Shown on the axes below are the graphs of \(y = f(x), y = f'(x), \) and \(y = f''(x). \)

Determine which graph is which and circle the ONE correct response below.

- \(f(x): \) I, \(f'(x): \) II, and \(f''(x): \) III
- \(f(x): \) I, \(f'(x): \) III, and \(f''(x): \) II
- \(f(x): \) II, \(f'(x): \) I, and \(f''(x): \) III
- \(f(x): \) II, \(f'(x): \) III, and \(f''(x): \) I
- \(f(x): \) III, \(f'(x): \) I, and \(f''(x): \) II
- \(f(x): \) III, \(f'(x): \) II, and \(f''(x): \) I

11. [4 points] Suppose \(w \) and \(r \) are continuous functions on \((-\infty, \infty), \) \(W(x) \) is an invertible antiderivative of \(w(x), \) and \(R(x) \) is an antiderivative of \(r(x). \)

Circle all of the statements I-VI below that must be true.
If none of the statements must be true, circle NONE OF THESE.

I. \(W(x) + R(x) + 2 \) is an antiderivative of \(w(x) + r(x). \)

II. \(W(x) + R(x) \) is an antiderivative of \(w(x) + r(x) + 2. \)

III. \(\cos(W(x)) \) is an antiderivative of \(\sin(w(x)). \)

IV. \(e^{W(x)} \) is an antiderivative of \(w(x)e^{w(x)}. \)

V. \(e^{R(x)} \) is an antiderivative of \(r(x)e^{R(x)}. \)

VI. If \(w \) is never zero, then \(W^{-1}(R(x)) \) is an antiderivative of \(\frac{r(x)}{w(W^{-1}(R(x)))}. \)

VII. NONE OF THESE