10. [5 points] Shown on the axes below are the graphs of $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$.

Determine which graph is which and circle the ONE correct response below.

- $f(x): \mathrm{I}, f^{\prime}(x)$: II, and $f^{\prime \prime}(x)$: III
- $f(x):$ I, $f^{\prime}(x)$: III, and $f^{\prime \prime}(x)$: II
- $f(x)$: II, $f^{\prime}(x)$: I, and $f^{\prime \prime}(x)$: III
- $f(x): \mathrm{II}, f^{\prime}(x): \mathrm{III}$, and $f^{\prime \prime}(x): \mathrm{I}$
- $f(x)$: III, $f^{\prime}(x):$ I, and $f^{\prime \prime}(x):$ II
- $f(x)$: III, $f^{\prime}(x)$: II, and $f^{\prime \prime}(x)$: I

11. [4 points] Suppose w and r are continuous functions on $(-\infty, \infty), W(x)$ is an invertible antiderivative of $w(x)$, and $R(x)$ is an antiderivative of $r(x)$.
Circle all of the statements I-VI below that must be true.
If none of the statements must be true, circle NONE OF THESE.
I. $\quad W(x)+R(x)+2$ is an antiderivative of $w(x)+r(x)$.
II. $\quad W(x)+R(x)$ is an antiderivative of $w(x)+r(x)+2$.
III. $\quad \cos (W(x))$ is an antiderivative of $\sin (w(x))$.
IV. $\quad e^{W(x)}$ is an antiderivative of $w(x) e^{w(x)}$.
V. $e^{R(x)}$ is an antiderivative of $r(x) e^{R(x)}$.
VI. If w is never zero, then $W^{-1}(R(x))$ is an antiderivative of $\frac{r(x)}{w\left(W^{-1}(R(x))\right.}$.
VII. NONE OF THESE
