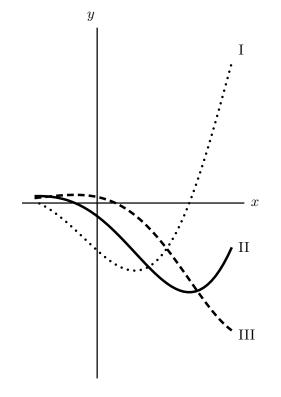
10. [5 points] Shown on the axes below are the graphs of y = f(x), y = f'(x), and y = f''(x).



Determine which graph is which and circle the <u>ONE</u> correct response below.

- f(x): I, f'(x): II, and f''(x): III
- f(x): I, f'(x): III, and f''(x): II
- f(x): II, f'(x): I, and f''(x): III
- f(x): II, f'(x): III, and f''(x): I
- f(x): III, f'(x): I, and f''(x): II
- f(x): III, f'(x): II, and f''(x): I

- 11. [4 points] Suppose w and r are continuous functions on $(-\infty, \infty)$, W(x) is an invertible antiderivative of w(x), and R(x) is an antiderivative of r(x). Circle <u>all</u> of the statements I-VI below that <u>must</u> be true. If none of the statements must be true, circle NONE OF THESE.
 - I. W(x) + R(x) + 2 is an antiderivative of w(x) + r(x).
 - II. W(x) + R(x) is an antiderivative of w(x) + r(x) + 2.
 - III. $\cos(W(x))$ is an antiderivative of $\sin(w(x))$.
 - IV. $e^{W(x)}$ is an antiderivative of $w(x)e^{w(x)}$.
 - V. $e^{R(x)}$ is an antiderivative of $r(x)e^{R(x)}$.
 - VI. If w is never zero, then $W^{-1}(R(x))$ is an antiderivative of $\frac{r(x)}{w(W^{-1}(R(x)))}$.
 - VII. NONE OF THESE