7. [10 points] The graph of a function \(j(x) \) is shown below. The shaded region \(A \) has area 2.

![Graph of \(j(x) \)](image)

On the axes provided below, sketch a well-labeled graph of an antiderivative of \(J(x) \) of \(j(x) \) that is defined and continuous on the interval \(-5 \leq x \leq 3\) and that satisfies \(J(0) = 1 \).

Be sure that you pay close attention to each of the following:

- the value of \(J(x) \) at each of its critical points and inflection points (Be sure to also write this data in the answer blanks at the bottom of the page.)
- where \(J \) is/is not differentiable
- where \(J \) is increasing/decreasing/constant
- the concavity of the graph of \(y = J(x) \)

![Graph of \(J(x) \)](image)

On the answer blanks below, write both the \(x \)- and \(y \)-coordinates of all critical points and all inflection points of \(J(x) \). Write NONE if \(J(x) \) has no such points.

Both coordinates of all critical points: ____________________________

Both coordinates of all inflection points: ____________________________