3. [14 points] Let g be a differentiable function defined for all real numbers. A table of some values of g is given below.

w	-1	1	3	5
$g(w)$	-2	3	5	6

Assume that g is always strictly increasing on the interval $[-1,5]$ and that g^{\prime} is always strictly decreasing on the interval $[-1,5]$.
a. [2 points] Estimate $g^{\prime}(5)$.

$$
\text { Solution: } \quad g^{\prime}(5) \approx \frac{g(5)-g(3)}{5-3}=\frac{1}{2} .
$$

b. [4 points] Rank the following quantities in order from least to greatest by filling in the blanks below with the options I-V.
I. 0
II. $g^{\prime}(1)$
III. $g(1)-g(-1)$
IV. $g^{\prime}(3)$
V. $\frac{g(3)-g(1)}{2}$
$0 \quad 0 \quad g^{\prime}(3)<\underline{\frac{g(3)-g(1)}{2}}<\underline{g^{\prime}(1)}<\underline{g(1)-g(-1)}$
c. [4 points] Find the best possible estimate of $\int_{-1}^{5}(g(w)+1) d w$ using a right hand sum and the data provided. Be sure to write all of the terms in the sum.
Solution:

$$
\begin{aligned}
\int_{-1}^{5}(g(w)+1) d w & \approx \Delta w((g(1)+1)+(g(3)+1)+(g(5)+1)) \\
& =2(4+6+7) \\
& =34
\end{aligned}
$$

d. [1 point] Is your estimate from part (c) an overestimate or underestimate of $\int_{-1}^{5}(g(w)+1) d w$? You do not need to explain your answer.

Underestimate Overestimate Impossible to determine
Solution: The function $g(w)+1$ is always increasing (since it is a vertical shift of $g(w)$, which is always increasing) so the right hand sum gives an overestimate.
e. [3 points] Find the average value of $g^{\prime}(w)$ on the interval $[-1,5]$.

Solution: By definition, the average value of $g^{\prime}(w)$ on $[-1,5]$ is

$$
\begin{aligned}
g^{\prime}(w) & =\frac{1}{6} \int_{-1}^{5}\left(g^{\prime}(w)\right) d w \\
& =\frac{1}{6}[g(5)-g(-1)] \\
& =\frac{8}{6}=\frac{4}{3} .
\end{aligned}
$$

(The average value of g^{\prime} on the interval is the average rate of change of g over the interval.)

Answer: $\longrightarrow \frac{4}{3}$

