10. [10 points] For each of the questions below, circle <u>all</u> correct choices. If none of the choices are correct, circle NONE OF THESE.

You are not required to show your work on this page.

a. [2 points] Which of the following equations gives the tangent line to $y = \ln(3x+4) + 1$ at x = -1? Circle all such equations.

i.
$$y = x + 2$$

ii. $y = 3x + 4$
v. $y = x + 4$
ii. $y = \frac{3}{3x + 4} + 1$
iv. $y = 1$
vi. None of these

b. [2 points] Which of the following functions are antiderivatives of $f(x) = \cos(x)$? Circle <u>all</u> such functions.

i.
$$\frac{1}{2}(\cos(x))^2$$

ii. $\cos\left(x-\frac{\pi}{2}\right)$
v. $19-\sin(x)$
vi. NONE OF THESE
ii. $\sin(x)+5$
iv. $\ln\left(3e^{\sin(x)}\right)$

c. [2 points] Which of the following limits equal 0? Circle <u>all</u> such expressions.

i.
$$\lim_{x \to \infty} \frac{e^x}{x}$$

iv.
$$\lim_{x \to \infty} \frac{x^3 - 24x^2 + 188x - 480}{x^2 - 12x + 20}$$

ii.
$$\lim_{x \to \infty} \frac{e^{-x}}{x}$$

v.
$$\lim_{x \to \infty} \frac{10000}{x^{1/1001}}$$

vi. NONE OF THESE

d. [2 points] For K a positive constant, which of the following limits equal K? Circle <u>all</u> such expressions.

$$\begin{array}{ll} \text{i. } \lim_{h \to 0} \frac{K(1+h)^2 - K(1)^2}{h} & \text{iv. } \boxed{\lim_{h \to 0} \frac{e^{\ln(K)+h} - e^{\ln(K)}}{h}} \\ \text{ii. } \lim_{h \to 0} \frac{K\cos(h+2\pi) - K\cos(2\pi)}{h} & \text{v. } \boxed{\lim_{h \to 0} \frac{(1+h)^K - (1)^K}{h}} \\ \text{iii. } \boxed{\lim_{h \to 0} \frac{K\sin(h+2\pi) - K\sin(2\pi)}{h}} & \text{vi. NONE OF THESE} \end{array}$$

e. [2 points] For constants A and B, consider the function h defined by

$$h(t) = \begin{cases} (At)^2 - 48 & \text{if } t < 2\\ Bt^3 & \text{if } t \ge 2. \end{cases}$$

Circle <u>all</u> pairs of values of A and B such that h(t) is differentiable.

i. A = 3, B = 3iii. A = -6, B = 12v. A = 18, B = 12ii. A = 6, B = 12iv. A = 0, B = 0vi. NONE OF THESE