3. [8 points] A man, who is 28 feet away from a 30 foot tall street lamp, is sinking into quicksand. (See diagram below.) At the moment when 6 feet of him are above the ground, his height above the ground is shrinking at a rate of 2 feet/second.

Throughout this problem, remember to show your work clearly, and include units in your answers.
a. [3 points] How long will the man's shadow (shown in bold in the diagram above) be at the moment when 6 feet of him are above the ground?
Solution: Let s be the length of the shadow. Noticing that the larger and smaller triangles in the picture are similar triangles, we have

$$
\begin{aligned}
\frac{30}{28+s} & =\frac{6}{s} \\
30 s & =168+6 s \\
24 s & =168 \\
s & =7 .
\end{aligned}
$$

So the length of the shadow is 7 feet at that moment.

Answer:
7 feet
b. [5 points] At what rate is the length of the man's shadow changing at the moment 6 feet of him are above the ground? Is his shadow growing or shrinking at that moment?
Solution: Let h be the height of the man above the ground, and let s be the length of his shadow. Using similar triangles as above, we have $\frac{30}{28+s}=\frac{h}{s}$ so $30 s=28 h+h s$.
Taking derivatives with respect to time t, we find $\quad 30 \frac{d s}{d t}=28 \frac{d h}{d t}+h \frac{d s}{d t}+s \frac{d h}{d t}$.
So at the moment when $h=6$, we have

$$
\begin{aligned}
\left.30 \frac{d s}{d t}\right|_{h=6} & =28(-2)+\left.6 \frac{d s}{d t}\right|_{h=6}+7(-2) \\
\left.24 \frac{d s}{d t}\right|_{h=6} & =-70 \\
\left.\frac{d s}{d t}\right|_{h=6} & =\frac{-70}{24}=-\frac{35}{12} \approx-2.917
\end{aligned}
$$

So at that moment, the shadow is shrinking at a rate of about 2.917 feet/second.
Answer: The man's shadow is (circle one) GROWING SHRINKING $\frac{35}{12}$ (about 2.917) feet/second at a rate of \qquad .

