6. [11 points] Suppose $h(x)$ is a function and $H(x)$ is an antiderivative of $h(x)$ such that $H(x)$ is defined and continuous on the entire interval $-3 \leq x \leq 4$. Portions of the graphs of $h(x)$ and $H(x)$ are shown below.

a. [4 points] Use the portions of the graphs shown to fill in the exact values of $H(x)$ in the table below.

x	-3	-2	1	2	4
$H(x)$			2		

b. [7 points] Use the axes above to sketch the missing portions of the graphs of both h and H over the interval $-3 \leq x \leq 4$.
Be sure that you pay close attention to each of the following:

- the values of $H(x)$ you found in part
(a) above
- where H is/is not differentiable
- where H and h are increasing, decreasing, or constant
- the concavity of the graph of $y=H(x)$

