8. [16 points] An apple farmer starts harvesting apples on her orchard. They start collecting apples at 6 am . Let $a(t)$ be the total amount of apples (in hundreds of pounds) that have been harvest t hours after 6 am . Some of the values of the invertible function $a(t)$, its derivative $a^{\prime}(t)$ and an antiderivative function $b(t)$ are shown below.

t	3	4.5	6	7.5	9	10.5	12			
$a(t)$	1.5	2	3	4.5	6	6.5	9			
t	3	6	9	12		t	3	6	9	12
$a^{\prime}(t)$	0.4	1.2	0.5	1.8		$b(t)$	6	12.5	25.5	43

a. [2 points] Use the tables to estimate the value of $a^{\prime \prime}(9)$. Show your work.

Answer: $a^{\prime \prime}(9) \approx$ \qquad
b. [3 points] Find the value of $\left(a^{-1}\right)^{\prime}(6)$. What are its units in the context of this problem?

Answer: $\left(a^{-1}\right)^{\prime}(6)=$ \qquad Units:
c. [3 points] Use the fact that $a^{\prime}(10)=3.2$ to complete the sentence below, including units, to give a practical interpretation in the context of this problem that can be understood by someone who knows no calculus.
The amount of apples harvested between 4 pm and $4: 30 \mathrm{pm} \ldots$
d. [3 points] Find the tangent line approximation $S(t)$ of $b(t)$ near $t=3$.

Answer: $S(t)=$ \qquad
e. [2 points] Use your answer in \mathbf{d} to approximate the value of $b(2)$.

Answer: $b(2) \approx$ \qquad
f. [1 point] Is your answer in e an overestimate or an underestimate? Circle your answer. OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFO
g. [2 points] Let $m(t)$ be an antiderivative of $a(t)$ satisfying $m(9)=-1$. Find $m(3)$.

$$
m(3)=
$$

\qquad

