9. [9 points] A Math 115 coordinator is trying to create functions with certain properties in order to test students' understanding of various calculus concepts.
a. [5 points] He wants a function $f(x)$ of the form

$$
f(x)= \begin{cases}a x^{2}+a x+b e^{x} & \text { for } x<0 \\ a+2 \cos (x) & \text { for } x \geq 0\end{cases}
$$

where a and b are constants.
Find all value(s) of a and b for which $f(x)$ be differentiable at $x=0$. Show enough work to justify your answer.

Answer: $a=$ \qquad

$$
b=
$$

\qquad
b. [4 points] The coordinator also wants a function $g(x)=c x-e^{x}$, where c is a constant, so that $g(x)$ has at least one critical point. What condition(s) on c will make this true? Find the x-values of all critical points in this case. Your answer may be in terms of c.

Answer: Critical points at $x=$ \qquad when c satisfies \qquad -.

