3. [12 points] Virgil, Duncan, Jasper and Zander are all watching a toy wind-up mouse move across the floor. Their person places the toy on the floor 2.3 meters away from Virgil, and it moves in a straight line directly away from Virgil at a strictly decreasing velocity. Below are some values of $v(t)$, the velocity of the toy mouse, in meters per second, t seconds after the person places it on the floor, where a positive velocity corresponds to the toy moving away from Virgil.

t	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
$v(t)$	3.19	2.39	1.86	1.43	1.11	0.86	0.54	0.42	0.11

a. [4 points] Estimate the value of $\int_{0.25}^{1.75} v(t) d t$ using a left-hand Riemann sum with $\Delta t=0.5$. Be sure to write down all the terms in your sum. Is your answer an over- or underestimate?

Solution: Left hand sum $=0.5(2.39+1.43+0.86)=2.34$.
This is (circle one):

AN OVERESTIMATE AN UNDERESTIMATE NOT ENOUGH INFORMATION

b. [3 points] How often should the values of $v(t)$ be measured in order to find upper and lower estimates for $\int_{0.25}^{1.75} v(t) d t$ that are within 0.1 m of the actual value?
Solution: We can estimate the size of Δt using the formula

$$
|v(1.75)-v(0.25)| \Delta t=|0.42-2.39| \Delta t=1.97 \Delta t \leq 0.1
$$

This yields $\Delta t \leq \frac{0.1}{0.97} \approx 0.0507$ seconds.
c. [2 points] Find the value of $\int_{0.5}^{1.25} v^{\prime}(t) d t$.

Solution: Using the Fundamental Theorem of Calculus $\int_{0.5}^{1.25} v^{\prime}(t) d t=v(1.25)-$ $v(0.5)=0.86-1.86=-1$.
d. [3 points] Which of the following represents how much the distance from the toy mouse to Virgil increases during the $2^{\text {nd }}$ second after it has been placed on the floor? Circle the one best answer.
i. $2.3-\int_{1}^{2} v(t) d t$
iv. $\int_{1}^{2} v(t) d t$
ii. $2.3-\int_{1}^{2} v^{\prime}(t) d t$
v. $\int_{1}^{2} v^{\prime}(t) d t$
iii. $\int_{1}^{2} v(t) d t-\int_{0}^{1} v(t) d t$
vi. $v(2)-v(1)$

