4. [5 points] Consider the function $Z(w)=\arctan (k w)-(w+1)$ where k is a nonzero constant. Use the limit definition of the derivative to write an explicit expression for $Z^{\prime}(-2)$. Your answer should not involve the letter Z. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.
Solution:
Answer: $Z^{\prime}(-2)=\lim _{h \rightarrow 0} \frac{\arctan (k(-2+h))-((-2+h)+1)-(\arctan (-2 k)+1)}{h}$
5. [9 points] A cylindrical bar of radius R and length L (both in meters) is put into an oven. As the bar gains temperature, its radius decreases at a constant rate of 0.05 meters per hour and its length increases at a constant rate of 0.12 meters per hour. Fifteen minutes after the bar was put into the oven, its radius and length are 0.4 and 3 meters respectively. At what rate is the volume of the bar changing at that point? Be sure to include units.

Solution: The volume of the cylindrical bar is $V=\pi R^{2} L$. Differentiating with respect to t, we obtain

$$
\frac{d V}{d t}=\pi\left(2 R \frac{d R}{d t} L+R^{2} \frac{d L}{d t}\right) .
$$

You are given that after 15 minutes: $R=0.4, L=3, \frac{d R}{d t}=-.05$ and $\frac{d L}{d t}=0.12$. Then

$$
\frac{d V}{d t}=\pi\left(2(0.4)(-0.05)(3)+(0.4)^{2}(0.12)\right)=-0.3166
$$

Answer: The volume of the bar is (circle one):
INCREASING DECREASING NOT ENOUGH INFORMATION
at a rate of $0.3166 \mathrm{~m}^{3}$ per hour.

