


6. [11 points] Suppose h(x) is a function and H(x) is an antiderivative of h(x) such that H(x) is defined and continuous on the entire interval $-3 \le x \le 4$. Portions of the graphs of h(x) and H(x) are shown below.

a. [4 points] Use the portions of the graphs shown to fill in the exact values of H(x) in the table below.

x	-3	-2	1	2	4
H(x)	1.0	0.5	2.0	1.0	3.0

b. [7 points] Use the axes above to sketch the missing portions of the graphs of <u>both</u> h and H over the interval $-3 \le x \le 4$.

Be sure that you pay close attention to each of the following:

- the values of H(x) you found in part (a) above
- \bullet where H is/is not differentiable
- \bullet where H and h are increasing, decreasing, or constant
- the concavity of the graph of y = H(x)