7. [9 points] Consider the family of functions

$$
f(x)=a x^{2} e^{-b x}
$$

where a and b are positive constants. Note that

$$
f^{\prime}(x)=a x(2-b x) e^{-b x} .
$$

a. [4 points] Find the exact values of a and b so that $f(x)$ has a critical point at $\left(4, e^{-2}\right)$.

Solution: Since $\left(4, e^{-2}\right)$ is a critical point of $f(x)$, then $f^{\prime}(4)=0$ or $0=4 a(2-4 b) e^{-4 b}$. From this equation we get that $2-4 b=0$ (since $a, e^{-4 b}>0$). Then $b=0.5$. We also know that the point $\left(4, e^{-2}\right)$ is in the graph of $y=f(x)$, then $e^{-2}=16 a e^{-4 b}$. Plugging the value of b, we get $e^{-2}=16 a e^{-2}$. This yields $1=16 a$, so $a=\frac{1}{16}$.
b. [5 points] Using your values of a and b from the previous part, find and classify the local extrema of $f(x)$. Use calculus to find and justify your answers, and be sure to show enough evidence that you have found them all. For each answer blank, write none if appropriate.

Solution: With the values found above $f^{\prime}(x)=\frac{1}{16} x(2-0.5 x) e^{-0.5 x}$. The critical points are found by solving

$$
f^{\prime}(x)=\frac{1}{16} x(2-0.5 x) e^{-0.5 x}=0
$$

In this case, we have $x=0$ or $2-0.5 x=0$ (since $. e^{-0.5 x}>0$). Hence the critical points are $x=0$ and $x=4$. To classify them we use the first derivative test:

- $f^{\prime}(-1)=\frac{1}{16}(-1)(2-0.5(-1)) e^{-0.5(-1)}=-0.257$
- $f^{\prime}(1)=\frac{1}{16}(2-0.5) e^{-0.5}=0.0568$
- $f^{\prime}(5)=\frac{1}{16}(5)(2-0.5(5)) e^{-0.5(5)}=-0.0128$

OR

- $f^{\prime}(-1)=(-)(+)(+)=-$
- $f^{\prime}(1)=(+)(+)(+)=+$
- $f^{\prime}(5)=(+)(-)(+)=-$

Answer: Local max(es) at $x=4$ Local min(s) at $x=0$

