8. [16 points] An apple farmer starts harvesting apples on her orchard. They start collecting apples at 6 am . Let $a(t)$ be the total amount of apples (in hundreds of pounds) that have been harvest t hours after 6 am . Some of the values of the invertible function $a(t)$, its derivative $a^{\prime}(t)$ and an antiderivative function $b(t)$ are shown below.

t	3	4.5	6	7.5	9	10.5	12		
$a(t)$	1.5	2	3	4.5	6	6.5	9		
t	3	6	9	12		t	3	6	9

a. [2 points] Use the tables to estimate the value of $a^{\prime \prime}(9)$. Show your work.

Solution: Possible approximations:
$a^{\prime \prime}(9) \approx \frac{1.8-0.5}{12-9} \approx 0.433, a^{\prime \prime}(9) \approx \frac{0.5-1.2}{9-6} \approx-.233$ or $a^{\prime \prime}(9) \approx \frac{0.433-.233}{2}=0.1$
b. [3 points] Find the value of $\left(a^{-1}\right)^{\prime}(6)$. What are its units in the context of this problem?

Solution: $\quad\left(a^{-1}\right)^{\prime}(6)=\frac{1}{a^{\prime}\left(a^{-1}(6)\right)}=\frac{1}{a^{\prime}(9)}=\frac{1}{0.5}=2$ hours per hundreds of pounds of apples.
c. [3 points] Use the fact that $a^{\prime}(10)=3.2$ to complete the sentence below, including units, to give a practical interpretation in the context of this problem that can be understood by someone who knows no calculus.
The amount of apples harvested between 4 pm and $4: 30 \mathrm{pm} .$.
Solution: increases by approximately 160 pounds of apples.
d. [3 points] Find the tangent line approximation $S(t)$ of $b(t)$ near $t=3$.

Solution: $\quad S(t)=b(3)+b^{\prime}(3)(t-3)=6+1.5(t-3)$.
e. [2 points] Use your answer in \mathbf{d} to approximate the value of $b(2)$.

Solution: $\quad b(2) \approx S(2)=6-1.5=4.5$.
f. [1 point] Is your answer in \mathbf{e} an overestimate or an underestimate? Circle your answer.

Solution:

OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFO
g. [2 points] Let $m(t)$ be an antiderivative of $a(t)$ satisfying $m(9)=-1$. Find $m(3)$.

Solution: We know that two antiderivatives $b(t)$ and $m(t)$ of $a(t)$ satisfy $m(t)=b(t)+C$. Then using $t=9$ we get that $C=m(9)-b(9)=-1-25.5=-26.5$. Hence $m(3)=$ $b(3)-26.5=6-26.5=-20.5$.

