9. [9 points] A Math 115 coordinator is trying to create functions with certain properties in order to test students' understanding of various calculus concepts.
a. [5 points] He wants a function $f(x)$ of the form

$$
f(x)= \begin{cases}a x^{2}+a x+b e^{x} & \text { for } x<0 \\ a+2 \cos (x) & \text { for } x \geq 0\end{cases}
$$

where a and b are constants.
Find all value(s) of a and b for which $f(x)$ be differentiable at $x=0$. Show enough work to justify your answer.

Solution: In order for $f(x)$ to be differentiable at $x=0, f(x)$ has to be continuous. Then

$$
\lim _{x \rightarrow 0^{-}} a x^{2}+a x+b e^{x}=b=\lim _{x \rightarrow 0^{+}} a+2 \cos (x)=a+2=f(0) .
$$

Then $b=a+2$. If $f(x)$ is differentiable then

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=2 a(0)+a+b e^{0}=a+b . \\
& \lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=-2 \sin (0)=0 .
\end{aligned}
$$

Hence $a+b=0$. Using both equation we obtain $a=-1$ and $b=1$.
b. [4 points] The coordinator also wants a function $g(x)=c x-e^{x}$, where c is a constant, so that $g(x)$ has at least one critical point. What condition(s) on c will make this true? Find the x-values of all critical points in this case. Your answer may be in terms of c.

Solution: The function $g(x)$ has critical points at values of x that satisfy

$$
g^{\prime}(x)=c-e^{x}=0 .
$$

Then the only potential critical point is $x=\ln (c)$. This critical point exists only if $c>0$.

