9. [11 points] Let $Q(x)=-(x-2)^{2}+3$ be the quadratic approximation of the function $y=f(x)$ at $x=3$. A part of the graph of $Q(x)$ is shown below.

a. [6 points] If possible, find the following quantities exactly. If there is not enough information to obtain an exact answer, write "NEI".

$$
f^{\prime \prime}(3)=
$$

$$
\quad f^{\prime \prime \prime}(3)=
$$

$\qquad$ - $\quad f(0)=$ $\qquad$
$Q^{\prime \prime}(3)=$ $\qquad$ , $Q^{\prime \prime \prime}(3)=$ $\qquad$ , $Q(0)=$ $\qquad$ .
b. [4 points] Assume that the function $f(x)$ is invertible and let $g(y)=f^{-1}(y)$ be its inverse. Given that $f(3)=2$, find the linear approximation $L(y)$ of $g(y)$ at $y=2$. Your answer should not include the letters $f$ or $g$. Show all your work.

Answer: $L(y)=$ $\qquad$
c. [1 point] Use the linear approximation $L(y)$ to approximate a solution to the equation $f(x)=1.7$.

Answer: $\qquad$

