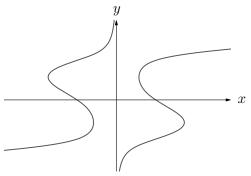
4. [8 points] Consider the curve C given by

$$3xy + x^2 = xy^3 + 3,$$

and note that it satisfies

$$\frac{dy}{dx} = \frac{2x - y^3 + 3y}{3xy^2 - 3x}.$$

The graph of \mathcal{C} is shown below



a. [3 points] Find an equation of the tangent line to the curve \mathcal{C} at the point (3,2).

Solution:

$$m = \frac{2(3) - (2)^3 + 3(2)}{3(3)(2)^2 - 3(3)} = \frac{4}{27}.$$

Answer:
$$y = 2 + \frac{4}{27}(x - 3)$$

b. [5 points] Find the coordinates (x, y) of the point(s) with y > 0 at which the curve C has a vertical tangent line. Show all your work to justify your answer(s).

Solution: We need to solve

$$3xy^2 - 3x = 0$$
$$3x(y-1)(y+1) = 0.$$

yields x = 0 or $y = \pm 1$.

In the case of x=0, the y-coordinates of the points (0,y) in the curve C satisfy

$$3(0)y + (0)^2 = (0)y^3 + 3$$

which yields to 0 = 3. That means that there are no points in the curve C with x-coordinate equal to 0.

Since we are looking for points above the x-axis (y > 0), then we only look for points (x, 1) in the curve C. Then the x-coordinates satisfy

$$3x(1) + x^{2} = x(1)^{3} + 3$$
$$x^{2} - 2x - 3 = 0$$
$$(x - 1)(x + 3) = 0 \quad x = 1, -3.$$

Answer: The coordinates are (1,1) and (-3,1).