9. [11 points] Let $Q(x)=-(x-2)^{2}+3$ be the quadratic approximation of the function $y=f(x)$ at $x=3$. A part of the graph of $Q(x)$ is shown below.

a. [6 points] If possible, find the following quantities exactly. If there is not enough information to obtain an exact answer, write "NEI".

Solution:

$$
\begin{aligned}
& f^{\prime \prime}(3)=-2, \quad f^{\prime \prime \prime}(3)=\mathrm{NEI}, \quad f(0)=\text { NEI, } \\
& Q^{\prime \prime}(3)=-2, \quad Q^{\prime \prime \prime}(3)=0, \quad Q(0)=-1 .
\end{aligned}
$$

b. [4 points] Assume that the function $f(x)$ is invertible and let $g(y)=f^{-1}(y)$ be its inverse. Given that $f(3)=2$, find the linear approximation $L(y)$ of $g(y)$ at $y=2$. Your answer should not include the letters f or g. Show all your work.
Solution: The formula for $L(y)$ is given by

$$
L(y)=f^{-1}(2)+\left(f^{-1}\right)^{\prime}(2)(y-2) .
$$

We know that $f^{-1}(2)=3$ and $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$. Hence

$$
\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}(3)}=-\frac{1}{2}
$$

Answer: $L(y)=3-\frac{1}{2}(y-2)$
c. [1 point] Use the linear approximation $L(y)$ to approximate a solution to the equation $f(x)=1.7$.
Solution:
Answer: $L(1.7)=3-\frac{1}{2}(1.7-2)=3.15$.

