10. [4 points] For each part, draw a function on the given axes that satisfies the given conditions. Or, if no such function exists, write DNE. Make sure your graphs are clear and unambiguous.
a. [2 points]

A function $g(x)$ that satisfies

- $\lim _{x \rightarrow-1^{+}} g(x)=1$ and
- $\lim _{x \rightarrow-1^{-}} g(x)=-2$.

b. [2 points]

A function $h(x)$ that satisfies

- $\lim _{x \rightarrow a} h(x)$ exists for every $-2<a<2$ and
- $h(x)$ is not continuous at $x=1$.

11. [6 points]

Suppose that $T(x)=A \cos \left(\frac{\pi}{2} x\right)+C$, where A and C are constants.
To the right is a table of values for $T(x)$.

x	0	2	3
$T(x)$	10	-2	4

a. [1 point] What is the period of $T(x)$?

Answer: \quad period $=$ \qquad
b. [2 points] Find the values of A and C.

Answer: $A=$ \qquad Answer: $C=$ \qquad
c. [3 points] Let $Q(x)$ be the quadratic approximation of $T(x)$ at $x=2$. Find a formula for $Q(x)$. Your answer should not include the constants A or C.

Answer: $\quad Q(x)=$ \qquad

