10. [4 points] For each part, draw a function on the given axes that satisfies the given conditions. Or, if no such function exists, write DNE. Make sure your graphs are clear and unambiguous.

a. [2 points]
A function \(g(x) \) that satisfies
- \(\lim_{x \to -1^+} g(x) = 1 \) and
- \(\lim_{x \to -1^-} g(x) = -2 \).

b. [2 points]
A function \(h(x) \) that satisfies
- \(\lim_{x \to a} h(x) \) exists for every \(-2 < a < 2\) and
- \(h(x) \) is not continuous at \(x = 1 \).

11. [6 points]
Suppose that \(T(x) = A \cos \left(\frac{\pi}{2} x \right) + C \), where \(A \) and \(C \) are constants.
To the right is a table of values for \(T(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(x))</td>
<td>10</td>
<td>-2</td>
<td>4</td>
</tr>
</tbody>
</table>

a. [1 point] What is the period of \(T(x) \)?

Answer: period =

b. [2 points] Find the values of \(A \) and \(C \).

Answer: \(A = \) \(C = \)

c. [3 points] Let \(Q(x) \) be the quadratic approximation of \(T(x) \) at \(x = 2 \). Find a formula for \(Q(x) \). Your answer should not include the constants \(A \) or \(C \).

Answer: \(Q(x) = \)