6. [13 points] The following are tables of values for two differentiable functions f(x) and g(x) and their derivatives. Missing values are denoted by a "?". Assume that each of these functions is defined for all real numbers, that f'(x) and g'(x) are continuous, and that g(x) is invertible.

x	0	2	3	6	9
f(x)	-1	?	0	-2	?
f'(x)	1	4	-1	?	1

x	-1	1	3	7	11
g(x)	-4	1	2	6	7
g'(x)	7	?	3	4	?

- **a**. [4 points] For each of the following, find the value exactly. If there is not enough information to find the quantity, write NEI.
 - i. [2 points] Let z(x) = f(g(x)). Find z'(3).

Answer: z'(3) = _____

ii. [2 points] Let $j(x) = g^{-1}(x)$. Find j'(7).

Answer: j'(7) = _____

b. [2 points] Use a left-hand Riemann sum with three equal subintervals to estimate $\int_{-1}^{11} g(x) dx$. Write out all the terms in your sum.

Answer:

c. [1 point] Is your answer in part **b**. an overestimate or an underestimate? Circle your answer. If there is not enough information circle NEI.

Answer: OVERESTIMATE UNDERESTIMATE NEI

d. [4 points] The function f(x) has two critical points, at x = 2.5 and $x = \pi$. These are the only critical points of f(x). For each critical point, decide if it is a local max, local min, neither, or if there is not enough information to determine this (NEI). Circle your answers.

Answer: $x = 2.5$ is a:	LOCAL MIN	LOCAL MAX	NEITHER	NEI
Answer: $x = \pi$ is a:	LOCAL MIN	LOCAL MAX	NEITHER	NEI

e. [2 points] On which of the following interval(s) must f(x) have an inflection point? Circle all correct answers.

$$[0,3]$$
 $[2,3]$ $[3,9]$