10. [4 points] For each part, draw a function on the given axes that satisfies the given conditions. Or, if no such function exists, write DNE. Make sure your graphs are clear and unambiguous.
Solution: Note that for both graphs, there are many functions that satisfy the listed properties.
a. [2 points]

A function $g(x)$ that satisfies

- $\lim _{x \rightarrow-1^{+}} g(x)=1$ and
- $\lim _{x \rightarrow-1^{-}} g(x)=-2$.

b. [2 points]

A function $h(x)$ that satisfies

- $\lim _{x \rightarrow a} h(x)$ exists for every $-2<a<2$ and
- $h(x)$ is not continuous at $x=1$.

11. [6 points]

Suppose that $T(x)=A \cos \left(\frac{\pi}{2} x\right)+C$, where A and C are constants.
To the right is a table of values for $T(x)$.

x	0	2	3
$T(x)$	10	-2	4

a. [1 point] What is the period of $T(x)$?

Solution: We know we can find the period using $\frac{2 \pi}{B}$, and for $T(x)$ we see that $B=\frac{\pi}{2}$. So, the period is $\frac{2 \pi}{\pi / 2}=\frac{4 \pi}{\pi}=4$.

$$
\text { Answer: } \quad \text { period }=
$$

\qquad
b. [2 points] Find the values of A and C.

Solution: The amplitude A is half the difference between the largest and smallest values of $T(x)$. Since the period is 4 and there is no horizontal shift, the largest value of $T(x)$ occurs at $x=0$ and the smallest value occurs at $x=2$. So the amplitude is $\frac{1}{2}(T(0)-T(2))=12$.
The vertical shift C is the midpoint value of $T(x)$. Since the period is 4 and there is no horizontal shift, this occurs at $x=1$ and $x=3$. From the table we see that $T(3)=4$.
Answer: $A=$ \qquad Answer: $C=4$
c. [3 points] Let $Q(x)$ be the quadratic approximation of $T(x)$ at $x=2$. Find a formula for $Q(x)$. Your answer should not include the constants A or C.

Answer: $\quad Q(x)=-2+\frac{3 \pi^{2}}{4}(x-2)^{2}$

