2. [8 points] Consider the family of functions

$$
g(x)=a \ln (x)+\frac{b}{x},
$$

defined for $x>0$, where a and b are positive constants.
a. [2 points] Any function $g(x)$ in this family has only one critical point. In terms of a and b, what is the x-coordinate of that critical point? Show your work.
Solution: Since

$$
g^{\prime}(x)=\frac{a}{x}-\frac{b}{x^{2}}=\frac{a x-b}{x^{2}},
$$

we see that $g^{\prime}(x)=0$ when $a x-b=0$, i.e. when $x=\frac{b}{a}$.
Answer: $x=\frac{b / a}{}$
b. [3 points] Is the critical point a local maximum, a local minimum, or neither? Circle your answer below. Use calculus, and be sure to show enough evidence to justify your answer.
Solution: We use the 2nd derivative test. Since

$$
g^{\prime \prime}(x)=-\frac{a}{x^{2}}+\frac{2 b}{x^{3}}=\frac{-a x+2 b}{x^{3}}
$$

we have that

$$
g^{\prime \prime}\left(\frac{b}{a}\right)=\frac{-a \frac{b}{a}+2 b}{\left(\frac{b}{a}\right)^{3}}=\frac{(-b+2 b) a^{3}}{b^{3}}=\frac{a^{3}}{b^{2}}>0 .
$$

Answer: local max local min neither
c. [3 points] Find values of a and b such that $g(x)$ has a critical point at $\left(e^{2}, 1\right)$. Show your work. Solution: We know that $0=g^{\prime}\left(e^{2}\right)=\frac{a e^{2}-b}{e^{4}}=0$, so that $b=a e^{2}$. We also know that $1=g\left(e^{2}\right)=a \ln \left(e^{2}\right)+\frac{b}{e^{2}}=2 a+\frac{a e^{2}}{e^{2}}=3 a$, so that $a=1 / 3$. Then $b=e^{2} / 3$.

Answer: $\quad a=\underline{1 / 3}$

Answer: $\quad b=\frac{e^{2} / 3}{}$

