6. [13 points] The following are tables of values for two differentiable functions $f(x)$ and $g(x)$ and their derivatives. Missing values are denoted by a "?". Assume that each of these functions is defined for all real numbers, that $f^{\prime}(x)$ and $g^{\prime}(x)$ are continuous, and that $g(x)$ is invertible.

x	0	2	3	6	9
$f(x)$	-1	$?$	0	-2	$?$
$f^{\prime}(x)$	1	4	-1	$?$	1

x	-1	1	3	7	11
$g(x)$	-4	1	2	6	7
$g^{\prime}(x)$	7	$?$	3	4	$?$

a. [4 points] For each of the following, find the value exactly. If there is not enough information to find the quantity, write NEI.
i. [2 points] Let $z(x)=f(g(x))$. Find $z^{\prime}(3)$.

Answer: $\quad z^{\prime}(3)=\quad 12$
ii. [2 points] Let $j(x)=g^{-1}(x)$. Find $j^{\prime}(7)$.
b. [2 points] Use a left-hand Riemann sum with three equal subintervals to estimate $\int_{-1}^{\prime \prime}(7)=\frac{\text { NEI }}{\text { Answer }} g(x) d x$. Write out all the terms in your sum.

Answer:

$$
4(-4+2+6)
$$

c. [1 point] Is your answer in part b. an overestimate or an underestimate? Circle your answer. If there is not enough information circle NEI.

Answer: OVERESTIMATE UNDERESTIMATE NEI

d. [4 points] The function $f(x)$ has two critical points, at $x=2.5$ and $x=\pi$. These are the only critical points of $f(x)$. For each critical point, decide if it is a local max, local min, neither, or if there is not enough information to determine this (NEI). Circle your answers.

Answer: $x=2.5$ is a: LOCAL MIN LOCAL MAX NEITHER NEI
Answer: $x=\pi$ is a: LOCAL MIN LOCAL MAX NEITHER NEI
e. [2 points] On which of the following interval(s) must $f(x)$ have an inflection point? Circle all correct answers.

$$
\begin{equation*}
[0,3] \quad[2,3] \tag{3,9}
\end{equation*}
$$

Solution: We know that for $f(x)$ to have an inflection point p, the sign of $f^{\prime \prime}(x)$ must change at p. The sign of $f^{\prime \prime}(x)$ must change during the interval $[0,3]$, but it does not happen at a single point - for example, this can occur if $f^{\prime \prime}(x)$ is first positive, and then zero over an interval, and then negative. So the correct answer is that none of the intervals must have an inflection point; however full credit was also given if only $[0,3]$ was circled.

