8. [11 points] The energy, in megajoules (MJ), produced by a wind turbine depends on the speed of the wind. In particular, suppose $P(s)$ is the power, in megajoules per hour (MJ/h), produced by the turbine when the speed of the wind is s kilometers per hour (km / h). Also suppose that $W(t)$ gives the wind speed, in km / h, at the turbine's location t hours after noon on a typical day.

Assume that $P(s)$ is invertible, and that both $P(s)$ and $W(t)$ are differentiable.
a. [2 points] Give a practical interpretation of the equation $P(W(0))=8$.

Solution: At noon on a typical day, the turbine produces $8 \mathrm{MJ} / \mathrm{h}$ of power.
b. [3 points] Give a practical interpretation of the equation $\int_{0}^{5} P(W(t)) d t=46$.

Solution: From noon to 5 p.m. on a typical day, the turbine generates 46 MJ of energy.
c. [3 points] Complete the following sentence to give a practical interpretation of the equation

$$
W^{\prime}(4)=21
$$

From 4 pm to $4: 10 \mathrm{pm}, \ldots$
Solution: the wind speed at the turbine's location increases by approximately $3.5 \mathrm{~km} / \mathrm{h}$.
d. [3 points] Circle the one statement below that is best supported by the equation

$$
\left(P^{-1}\right)^{\prime}(13)=2.9 .
$$

i. If the turbine is producing $13 \mathrm{MJ} / \mathrm{h}$ of power, the wind speed must increase by approximately $2.9 \mathrm{~km} / \mathrm{h}$ to produce an additional MJ/h of power.
ii. If the wind is blowing at $13 \mathrm{~km} / \mathrm{h}$ and increases to $14 \mathrm{~km} / \mathrm{h}$, the power produced by the turbine will increase by about $2.9 \mathrm{MJ} / \mathrm{h}$.
iii. If the wind speed is $13 \mathrm{~km} / \mathrm{h}$, the power generation of the turbine will increase by one MJ / h if the wind speed increases to about $15.9 \mathrm{~km} / \mathrm{h}$.
iv. When the turbine is generating $13 \mathrm{MJ} / \mathrm{h}$ of power, an increase of one km / h in wind speed will produce approximately $2.9 \mathrm{MJ} / \mathrm{h}$ more power.

