3. [12 points] In parts of Antarctica, snowfall accumulates each year and is eventually compacted into ice. A research team is drilling down into this ice to collect a sample, called an ice core, of snowfall from past years.

- Let $D(t)$ be the depth below the surface, in feet, that the drill has reached t minutes after it begins drilling the ice core.
- Let $A(p)$ be the age, in years, of the ice at a depth of p feet below the surface.

The functions $D(t)$ and $A(p)$ are invertible and differentiable. Use a complete sentence to write a practical interpretation for the equations in a.-c.
a. $[3$ points $] D^{-1}\left(A^{-1}(110)\right)=35$

Solution: The drill reaches ice that is 110 years old 35 minutes after it begins drilling the ice core.
b. [3 points] $A^{\prime}(185)=12$

Solution: The ice 186 feet below the surface is approximately 12 years older than the ice 185 feet below the surface.
c. [3 points] $\int_{60}^{120} D^{\prime}(t) d t=172$

Solution: Two hours after it begins drilling the ice core, the drill is 172 feet deeper than it was after only one hour of drilling.
d. [3 points] Write an expression involving an integral that represents the average age of the ice in the first 300 feet below the surface.

Solution: $\frac{1}{300} \int_{0}^{300} A(p) d p$

