5. [12 points] Consider the continuous function

$$
g(x)= \begin{cases}-\left(x^{2}+12 x+37\right) e^{-x}+17 & x \leq 0 \\ 7 x^{3}-21 x^{2}-168 x-20 & x>0 .\end{cases}
$$

Note that

$$
g^{\prime}(x)= \begin{cases}(x+5)^{2} e^{-x} & x<0 \\ 21(x-4)(x+2) & x>0\end{cases}
$$

a. [3 points] Find the critical points of $g(x)$.

Solution: The derivative is zero at $x=-5$ and 4 . The derivative is undefined at $x=0$, as the derivative approaches 25 to the left of zero but -168 to the right of zero.
b. [4 points] Find the x-coordinate of all local extrema of $g(x)$, and classify each as a local maximum or a local minimum. Use calculus to find and justify your answers, and be sure to show enough evidence that you have found all local extrema.

Solution:

We will use the first derivative test.

	$x<-5$	$-5<x<0$	$0<x<4$	$4<x$
$g^{\prime}(x)$	$+\cdot+=+$	$+\cdot+=+$	$-\cdot+=-$	$+\cdot+=+$

Thus we have a local max at $x=0$ and a local min at $x=4$.
c. [5 points] Find the x-coordinate of all global extrema of $g(x)$ on the interval $(-\infty, 8]$, and classify each as a global maximum or a global minimum. Use calculus to find your answers, and be sure to show enough evidence to fully justify your answers.

Solution: We check the value of $g(x)$ at its critical points as well as the end behavior.
$\lim _{x \rightarrow-\infty} g(x)=-\infty$
$g(-5)=-2 e^{5}+17 \approx-279.826$
$g(0)=-20$
$g(4)=-580$
$g(8)=876$
Thus there is no global min, and the global max is at $x=8$.

