5. [12 points] Consider the continuous function

$$g(x) = \begin{cases} -(x^2 + 12x + 37)e^{-x} + 17 & x \le 0\\ 7x^3 - 21x^2 - 168x - 20 & x > 0. \end{cases}$$

Note that

$$g'(x) = \begin{cases} (x+5)^2 e^{-x} & x < 0\\ 21(x-4)(x+2) & x > 0. \end{cases}$$

a. [3 points] Find the critical points of g(x).

Solution: The derivative is zero at x = -5 and 4. The derivative is undefined at x = 0, as the derivative approaches 25 to the left of zero but -168 to the right of zero.

b. [4 points] Find the x-coordinate of all local extrema of g(x), and classify each as a local maximum or a local minimum. Use calculus to find and justify your answers, and be sure to show enough evidence that you have found all local extrema.

Solution: We will use the first derivative test.					
		x < -5	-5 < x < 0	0 < x < 4	4 < x
	g'(x)	$+\cdot+=+$	$+ \cdot + = +$	$- \cdot + = -$	$+ \cdot + = +$
T D1 1 1			1 1 .		

Thus we have a local max at x = 0 and a local min at x = 4.

c. [5 points] Find the x-coordinate of all global extrema of g(x) on the interval $(-\infty, 8]$, and classify each as a global maximum or a global minimum. Use calculus to find your answers, and be sure to show enough evidence to fully justify your answers.

Solution: We check the value of g(x) at its critical points as well as the end behavior. $\lim_{x \to -\infty} g(x) = -\infty$ $g(-5) = -2e^5 + 17 \approx -279.826$ g(0) = -20 g(4) = -580 g(8) = 876Thus there is no global min, and the global max is at x = 8.