6. [14 points] A portion of the graph of a function $p(x)$ is shown below. The area of the shaded region is 8 , and the portion of the graph on the interval $[-3,0]$ is a quarter circle. Also note that $p(x)$ is linear on the intervals $(0,2)$ and $(4,5)$.

Let $P(x)$ be the continuous antiderivative of $p(x)$ passing through the point $(0,1)$.
a. [3 points] Find all critical points of $P(x)$ in the interval $(-7,5)$. For each, determine if it a local maximum, local minimum, or neither.

Solution: $\quad x=-3$ is a local min, and $x=2$ is a local max.
b. [2 points] For what values of x in the interval $(-7,5)$ is $P(x)$ a linear function? Give your answer as one or more intervals.

Solution: $2<x<4$.
c. [2 points] For approximately what values of x in the interval $(-7,5)$ is the function $P(x)$ concave up? Give your answer as one or more intervals.

Solution: $-5.8<x<2$ and $4<x<5$
d. [2 points] For approximately what values of x in the interval $(-7,5)$ is the function $p^{\prime \prime}(x)$ positive? Give your answer as one or more intervals.

Solution: $-7<x<-4.5$
e. [5 points] Create a table giving the exact values of $P(x)$ at $x=-7,-3,0,2,4$, and 5 .

```
Solution: \(\quad P(-7)=9-\frac{9}{4} \pi\)
\(P(-3)=1-\frac{9}{4} \pi\)
\(P(0)=1\)
\(P(2)=9\)
\(P(4)=3\)
\(P(5)=1.5\)
```

