7. [13 points] Suppose that $f(t)$ is a differentiable, increasing function defined for all real numbers. Some values of $f(t)$ are listed in the table below. Assume that $f^{\prime}(t)$ is continuous.

t	2.5	3.1	4.0	4.5	5.5	7.0	8.5	9.4	10	10.5	12.5
$f(t)$	3.2	4.5	6.5	7.2	8.5	9.2	9.8	10.5	11.2	12.5	14.5

a. [2 points] Compute $\int_{4}^{7} f^{\prime}(t) d t$ exactly, or write NEI if there is not enough information to do so.

Solution: $\quad \int_{4}^{7} f^{\prime}(t) d t=f(7)-f(4)=9.2-6.5=2.7$
b. [2 points] Compute the average value of $f^{\prime}(t)$ on the interval [4.5, 10] exactly, or write NEI if there is not enough information to do so.

Solution: $\frac{1}{10-4.5} \int_{4.5}^{10} f^{\prime}(t) d t=\frac{f(10)-f(4.5)}{10-4.5}=\frac{11.2-7.2}{5.5} \approx 0.727$.
c. [2 points] Estimate $f^{\prime}(9)$.

Solution: $\quad \frac{f(9.4)-f(8.5)}{9.4-8.5}=\frac{10.5-9.8}{0.9}=\frac{7}{9} \approx 0.78$
d. [2 points] Use a left-hand Riemann sum with five equal subdivisions to estimate $\int_{2.5}^{10} f(t) d t$. Write out all the terms in your sum.

Solution: $1.5(f(2.5)+f(4)+f(5.5)+f(7)+f(8.5))=1.5(3.2+6.5+8.5+9.2+9.8)=1.5(37.2)=55.8$
e. [2 points] Does your answer to part d. overestimate, underestimate, or equal the value of $\int_{2.5}^{10} f(t) d t$? Explain your answer.

Solution: $f(t)$ is increasing, so the left-hand sum is an underestimate.
f. [3 points] Use a right-hand Riemann sum with four equal subdivisions to estimate $\int_{4.5}^{12.5} f^{-1}(t) d t$. Write out all the terms in your sum.

$$
\text { Solution: } \quad 2\left(f^{-1}(6.5)+f^{-1}(8.5)+f^{-1}(10.5)+f^{-1}(12.5)\right)=2(4+5.5+9.4+10.5)=2(29.4)=58.8
$$

