1. [15 points] Given below is a table of values for a function $T(h)$ and its derivative $T^{\prime}(h)$. Suppose the functions $T(h), T^{\prime}(h)$, and $T^{\prime \prime}(h)$ are all defined and continuous on $(-\infty, \infty)$.

h	-4	-2	0	2	4	6	8
$T(h)$	-1	3	5	6	2	1	0
$T^{\prime}(h)$	3	2	1	0	-1	0	-2

Assume that between consecutive values of h given in the table above, $T(h)$ is either always increasing or always decreasing.

In a.-c., give numerical answers. You do not need to show work on this page, but limited partial credit may be awarded for work shown.
a. [2 points] Find the average rate of change of $T(h)$ on the interval $[-4,4]$.

Solution:

$$
\frac{T(4)-T(-4)}{4-(-4)}=\frac{2-(-1)}{4-(-4)}=\frac{3}{8}
$$

Answer:
b. [2 points] Use the table to estimate $T^{\prime \prime}(7)$.

Solution:

$$
T^{\prime \prime}(7) \approx \frac{T^{\prime}(8)-T^{\prime}(6)}{8-6}=\frac{-2-0}{2}=-1 .
$$

Answer:
c. $[3$ points $]$ Find $\int_{0}^{6}\left(2 T^{\prime}(h)+3\right) d h$.

Solution:
$\int_{0}^{6}\left(2 T^{\prime}(h)+3\right) d h=2 \int_{0}^{6} T^{\prime}(h) d h+\int_{0}^{6} 3 d h=2(T(6)-T(0))+6 \cdot 3=2(1-5)+18=10$.

Answer: 10
d. [2 points] Find an equation of the tangent line to the graph of $T(h)$ at $h=-4$.

Solution: Using y as the dependent variable and h as the independent variable, an equation of the line tangent to $y=T(h)$ at $h=-4$ is

$$
y=T(-4)+T^{\prime}(-4)(h+4)=-1+3(h+4) .
$$

\qquad

This problem continues from the previous page. The problem statement is repeated for convenience.
Given below is a table of values for a function $T(h)$ and its derivative $T^{\prime}(h)$. Assume the functions $T(h), T^{\prime}(h)$, and $T^{\prime \prime}(h)$ are all defined and continuous on $(-\infty, \infty)$.

h	-4	-2	0	2	4	6	8
$T(h)$	-1	3	5	6	2	1	0
$T^{\prime}(h)$	3	2	1	0	-1	0	-2

Assume that between consecutive values of h given in the table above, $T(h)$ is either always increasing or always decreasing.
e. [2 points] Use a right-hand Riemann sum with three equal subdivisions to estimate $\int_{-4}^{2} T(h) d h$. Write out all the terms in your sum, which you do not need to simplify.

Solution:

$$
2(T(-2)+T(0)+T(2))=2(3+5+6)=28 .
$$

f. [1 point] Does the answer to part e. overestimate, underestimate, or equal the value of $\int_{-4}^{2} T(h) d h$? Circle your answer. If there is not enough information, circle NeI.

Answer: OVERESTIMATE UNDERESTIMATE EQUAL NEI
g. [1 point] How many equal subdivisions of $[-4,2]$ are needed to guarantee that the difference between the left and right Riemann sum approximations of $\int_{-4}^{2} T(h) d h$ is at most 1 ?

Solution: Letting n be the number of subdivisions needed, we have

$$
(T(2)-T(-4))\left(\frac{2-(-4)}{n}\right)=1
$$

so $\frac{7 \cdot 6}{n}=1$, or $n=42$.

Answer: \qquad
h. [2 points] Find a number L that makes the following statement a correct conclusion of the Mean Value Theorem: There is a number c between -2 and 4 such that $T^{\prime}(c)=L$.

Solution:

$$
L=\frac{T(4)-T(-2)}{4-(-2)}=\frac{2-3}{4-(-2)}=\frac{-1}{6} .
$$

\qquad

