3. [11 points] Throughout this problem, let $p(x)=-x^{3}+3 x+2$.
a. [2 points] Find the x-coordinates of all critical points of $p(x)$. If there are none, write none.

Solution: Since polynomials are differentiable everywhere, the critical points of $p(x)$ will be exactly the points where $p^{\prime}(x)$ is equal to zero. Solving

$$
p^{\prime}(x)=-3 x^{2}+3=-3(x+1)(x-1)=0
$$

gives us critical points of $x=1$ and $x=-1$.
Answer: \quad Critical points at $x=\quad \pm 1$

In parts b. - d. below, you are asked to find extrema (local or global) of $p(x)$ on a given interval. If there are none of a particular type, write none. Use calculus to find your answers, and make sure you show enough evidence to justify your conclusions.
b. [3 points] Find the x-coordinates of all local minimum(s) and local maximum(s) of $p(x)$ on the interval $(-2,3)$.

Solution: Both critical points we found in (a) belong to the interval $(-2,3)$, so we must check each to see whether it is a local max or min or neither. We can use either the First or Second Derivative Test.

First Derivative Test: by plugging in test points (e.g., $p^{\prime}(0)=3$ and $p(-2)=p(2)=-9$), using sign logic, or simply using the fact that $p^{\prime}(x)$ is a downward opening parabola with roots at ± 1, we get the following sign chart:

Thus $p^{\prime}(x)$ changes sign from negative to positive at $x=-1$ and from positive to negative at $x=1$, making -1 a local min and 1 a local max of $p(x)$.
Second Derivative Test: We have $p^{\prime \prime}(x)=-6 x$, so $p^{\prime \prime}(-1)=6>0$ and $p^{\prime \prime}(1)=-6<0$. Thus $p(x)$ is concave up near -1 and concave down near 1 , so -1 is a local min and 1 a local max of $p(x)$.
Answer: \quad Local $\min (\mathrm{s})$ at $x=$
Answer: \quad Local $\max (\mathrm{es})$ at $x=\frac{1}{}$
c. [4 points] Find the x-coordinates of all global minimum(s) and global maximum(s) of $p(x)$ on the interval $[-2,3]$.

Solution: Since $p(x)$ is continuous, we know that it has both a max and a min on $[-2,3]$, and these extrema must occur at either a critical point of $p(x)$ or an endpoint of $[-2,3]$. So we evaluate $p(x)$ at all such points, and look for the greatest and least values. We have:

$$
p(-2)=4, \quad p(-1)=0, \quad p(1)=4, \quad p(3)=-16 .
$$

From this we see that the global minimum of $p(x)$ on $[-2,3]$ is -16 , occurring at $x=3$, and the global maximum of $p(x)$ on $[-2,3]$ is 4 , occurring at $x=-2$ and $x=1$.

Answer: Global min(s) at $x=\quad 3$

Answer: Global max(es) at $x=\quad-2$ and 1
d. [2 points] Find the x-coordinates of all global minimum(s) and global maximum(s) of $p(x)$ on the interval $(-2,3)$.

Solution: Based on our results from part (c), the global maximum of $p(x)$ on $(-2,3)$ will be 4 , occurring just at $x=1$ this time since we are excluding the endpoint $x=-2$ from our interval. Furthermore, the values of $p(x)$ will approach -16 as x tends to the right endpoint $x=3$, but since we are now excluding this endpoint from our interval, $p(x)$ will never actually reach -16 , so $p(x)$ has no global minimum on $(-2,3)$.

Answer: Global min(s) at $x=\quad$ none

Answer: Global max(es) at $x=\quad 1$

