5. [12 points] The Queen of Hearts has welcomed the Cheshire Kid into a poker game at her saloon. Unfortunately, since he joined the games, her luck has been nearly as bad as his. Suppose $W(t)$ gives the rate at which the Queen's saloon generates profits, and $L(t)$ the rate at which the Queen loses money at poker, both in thousands of dollars per week, t days after the Cheshire Kid joined her poker games. Assume that during these two weeks, profits from the saloon and gains/losses from poker are the only factors affecting the Queen's wealth. $W(t)$ is the dashed graph and $L(t)$ the solid graph in the figure below.

a. [2 points] Circle all times t when the Queen was "up" in poker games she played with the Kid, meaning that in the time interval $[0, t]$ she had won more money than she had lost.

$$
t=1 \quad t=4 \quad t=6 \quad t=11 \quad \text { NONE OF THESE }
$$

b. [2 points] Circle all time intervals when the Queen's wealth was increasing.

$$
\begin{equation*}
(3,4) \tag{6,7}
\end{equation*}
$$

$$
\begin{equation*}
(8,9) \tag{11,12}
\end{equation*}
$$

NONE OF THESE
c. [2 points] Circle the time at which the Queen's wealth was changing the fastest.

$$
t=3 \quad t=6 \quad t=10 \quad t=14 \quad \text { NONE OF THESE }
$$

d. [2 points] Circle the number that gives the best approximation of the total amount of money the Queen lost from playing poker between $t=0$ and $t=6$.

$$
\begin{array}{llllll}
-\$ 5,500 & -\$ 3,500 & -\$ 500 & \$ 500 & \$ 3,500 & \$ 5,500
\end{array}
$$

In parts d. and e. below, give your answers in terms of $W(t), L(t)$, their derivatives, and/or definite integrals. Do not attempt to numerically evaluate any expressions in your answers.
e. [2 points] Write a single expression for the net change (in dollars) in the Queen's wealth from $t=0$ to $t=14$.

Answer:

$$
\frac{1000}{7} \int_{0}^{14}(W(t)-L(t)) d t
$$

f. [2 points] Write a single expression for the average rate at which the Queen lost money playing poker over the two weeks. Include units.

Answer:

$$
\frac{1}{14} \int_{0}^{14} L(t) d t \text { thousands of dollars per week }
$$

