6. [8 points] In this problem, you may use the following facts:

- The surface area S of a sphere of radius r is given by $S=4 \pi r^{2}$.
- The volume V of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$.

Suppose a spherical snowball is melting so that its surface area decreases at the constant rate of 20 cm^{2} per minute. Use this information to answer the following questions, and remember to include appropriate units in your answers.
a. [4 points] How fast is the radius of the snowball changing when the radius is 5 cm ?

Solution: Let r be the radius, S the surface area, and V the volume of our melting snowball, so each of r, S, and V is a function of time, t, where t is measured in minutes and r, S, and V are measured in $\mathrm{cm}, \mathrm{cm}^{2}$, and cm^{3}, respectively.
We want to find $\frac{d r}{d t}$ when $r=5$. We are given that $\frac{d S}{d t}=-20$. Differentiating the equation $S=4 \pi r^{2}$ with respect to t, we obtain

$$
\frac{d S}{d t}=8 \pi r \frac{d r}{d t}
$$

Substituting in $\frac{d S}{d t}=-20$ and $r=5$ and solving for $\frac{d r}{d t}$ gives us

$$
\frac{d r}{d t}=\frac{1}{8 \pi \cdot 5} \cdot(-20)=-\frac{1}{2 \pi} \mathrm{~cm} / \mathrm{min} .
$$

Answer:

$$
-\frac{1}{2 \pi} \mathrm{~cm} / \mathrm{min}
$$

b. [4 points] How fast is the volume of the snowball changing when the radius is 5 cm ?

Solution: Now we want to find $\frac{d V}{d t}$ when $r=5$. Differentiating the equation $V=\frac{4}{3} \pi r^{3}$ with respect to t, we get

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} .
$$

Substituting in $r=5$ and $\frac{d r}{d t}=-\frac{1}{2 \pi}$ from part (a), we get

$$
\frac{d V}{d t}=4 \pi\left(5^{2}\right) \cdot \frac{-1}{2 \pi}=-50 \mathrm{~cm}^{3} / \mathrm{min} .
$$

Answer:

