8. [9 points]

A rectangular wooden beam is to be cut from circular tree log of diameter 6 inches, with the rectangular cross section shown in the figure to the right. The strength S of the beam is proportional to the product of the beam's width w in inches and the square of its depth d in inches, so

$$
S=k w d^{2}
$$

where $k>0$ is a constant. Find the dimensions of the beam of
 maximum strength that can be cut from the log.

Solution: We want to maximize the strength $S=k w d^{2}$ of the beam, so we first need to write S as a function of one variable. By the Pythagorean Theorem, we have $w^{2}+d^{2}=6^{2}=36$, so $d^{2}=36-w^{2}$, and therefore

$$
S=k w\left(36-w^{2}\right)=36 k w-k w^{3} .
$$

Since $0<w<6$, we seek to maximize $S=S(w)=36 k w-k w^{3}$ on the interval $0<w<6$. Differentiating with respect to w (and recalling that k is a positive constant), we get

$$
\frac{d S}{d w}=36 k-3 k w^{2}=3 k\left(12-w^{2}\right)
$$

Thus $\frac{d S}{d w}=0$ when $w= \pm \sqrt{12}$, so the only critical point of $S(w)$ in the interval $(0,6)$ is $w=\sqrt{12}$. To confirm that $w=\sqrt{12}$ is a maximum of $S(w)$ on $(0,6)$, note that $S(\sqrt{12})=24 k \sqrt{12}>0$ while

$$
\lim _{w \rightarrow 0^{+}} S(w)=S(0)=0 \quad \text { and } \quad \lim _{w \rightarrow 6^{-}} S(w)=S(6)=36 k \cdot 6-k \cdot 6^{3}=0 .
$$

Finally, using the constraint equation $w^{2}+d^{2}=36$, we see that $d=\sqrt{24}$ when $w=\sqrt{12}$.

Answer: $w=\underline{\sqrt{12} \text { inches }} \quad$ and $\quad d=\underline{\sqrt{24} \text { inches }}$

