8. [9 points]

A rectangular wooden beam is to be cut from circular tree log of diameter 6 inches, with the rectangular cross section shown in the figure to the right. The strength S of the beam is proportional to the product of the beam's width w in inches and the square of its depth d in inches, so

$$S = kwd^2$$

where k > 0 is a constant. Find the dimensions of the beam of maximum strength that can be cut from the log.

Solution: We want to maximize the strength $S = kwd^2$ of the beam, so we first need to write S as a function of one variable. By the Pythagorean Theorem, we have $w^2 + d^2 = 6^2 = 36$, so $d^2 = 36 - w^2$, and therefore

$$S = kw(36 - w^2) = 36kw - kw^3.$$

Since 0 < w < 6, we seek to maximize $S = S(w) = 36kw - kw^3$ on the interval 0 < w < 6. Differentiating with respect to w (and recalling that k is a positive constant), we get

$$\frac{dS}{dw} = 36k - 3kw^2 = 3k(12 - w^2).$$

Thus $\frac{dS}{dw} = 0$ when $w = \pm \sqrt{12}$, so the only critical point of S(w) in the interval (0,6) is $w = \sqrt{12}$. To confirm that $w = \sqrt{12}$ is a maximum of S(w) on (0,6), note that $S(\sqrt{12}) = 24k\sqrt{12} > 0$ while

 $\lim_{w \to 0^+} S(w) = S(0) = 0 \quad \text{and} \quad \lim_{w \to 6^-} S(w) = S(6) = 36k \cdot 6 - k \cdot 6^3 = 0.$

Finally, using the constraint equation $w^2 + d^2 = 36$, we see that $d = \sqrt{24}$ when $w = \sqrt{12}$.

Answer: $w = \sqrt{12}$ inches and $d = \sqrt{24}$ inches