
10. [14 points] A function h(x) is defined and continuous on $(-\infty, \infty)$. A portion of the graph of h'(x), the derivative of h(x), is shown below. Note that x = 0 is a vertical asymptote of y = h'(x) and that y = -2 is a horizontal asymptote, as indicated.

In each part **a.**–**f.** below, circle all correct choices.

a. [2 points] At which of the following value(s) does h(x) have a critical point?

x = -7 x = -5 x = -2 x = 0 x = 5 None of these

b. [2 points] At which of the following value(s) does h(x) have a local maximum?

x = -6 x = -4 x = 0 x = 1 x = 5 None of these

c. [2 points] At which of the following value(s) does h'(x) have a local maximum?

x = -7 x = -4 x = 0 x = 2 x = 5 None of these

d. [2 points] At which of the following value(s) does h(x) have an inflection point?

$$x = -6$$
 $x = 0$ $x = 1$ $x = 2$ $x = 5$ None of these

e. [2 points] On which of the following intervals does h'(x) satisfy the hypotheses of the Mean Value Theorem?

$$[-5.5, -4.5]$$
 $[-4, -3]$ $[-4, 5]$ $[4, 5]$ none of these

- **f.** [2 points] On which of the following intervals does h'(x) satisfy the conclusion of the Mean Value Theorem?
 - [-5.5, -4.5] [-4, -3] [-4, 5] [4, 5] None of these
- g. [2 points] Find the following limits. If there is not enough information, write NEI. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE.

 $\lim_{x \to \infty} h(x) = \underline{\qquad} \qquad \qquad \lim_{x \to \infty} h'(x) = \underline{\qquad}$