1. [12 points] Given below is a table of values for an **even** function g(x). Assume the function g(x) and its derivative g'(x) are defined and continuous on $(-\infty, \infty)$.

x	-2	0	2	4	6	8	10	12
g(x)	2	0	2	5	8	3	2	3

Assume that between consecutive values of x given in the table above, g(x) is either always increasing or always decreasing.

a. [2 points] Find
$$\int_{2}^{4} (2g'(x) - 3x) dx$$
.

Answer:

b. [3 points] Find the average of value of g(x) on the interval [-5, 5] given that $\int_0^5 4g(x) dx = 60$.

Answer:

c. [2 points] Find a number M that makes the following statement a correct conclusion of the Mean Value Theorem: There is a number c between 6 and 8 such that g'(c) = M.

Answer: M = ______ **d.** [2 points] Use a right-hand Riemann Sum with 3 equal subdivisions to estimate $\int_{0}^{6} g(x) dx$.

e. [1 point] Is the estimate in part d. an overestimate or an underestimate? Circle your answer below, or circle NEI if there is not enough information to tell.

UNDERESTIMATE OVERESTIMATE NEI

f. [2 points] How many equal subdivisions of [0, 6] are needed so that the difference between the left-hand and right-hand Riemann sum approximations of $\int_0^6 g(x) dx$ is exactly 1?