1. [12 points] Given below is a table of values for an **even** function g(x). Assume the function g(x)and its derivative q'(x) are defined and continuous on $(-\infty,\infty)$.

x	-2	0	2	4	6	8	10	12
g(x)	2	0	2	5	8	3	2	3

Assume that between consecutive values of x given in the table above, q(x) is either always increasing or always decreasing.

a. [2 points] Find $\int_{2}^{4} (2g'(x) - 3x) dx$. Solution: $\int_{2}^{4} \left(2g'(x) - 3x \right) dx = 2 \int_{2}^{4} g'(x), dx - \int_{2}^{4} 3x \, dx = 2 \left(g(4) - g(2) \right) - \left(\frac{3}{2} \cdot 4^{2} - \frac{3}{2} \cdot 2^{2} \right)$ $= 2(5-2) - \frac{3}{2}(16-4) = 6-18 = -12.$ ______ Answer: **b.** [3 points] Find the average of value of g(x) on the interval [-5, 5] given that $\int_{0}^{5} 4g(x) dx = 60$. Solution: Given that g(x) is even and $\int_0^5 4g(x) dx = 60$, the average value of g(x) on [-5, 5] is

$$\frac{1}{5 - (-5)} \int_{-5}^{5} g(x) \, dx = \frac{2}{10} \int_{0}^{5} g(x) \, dx = \frac{2}{40} \int_{0}^{5} 4g(x) \, dx = \frac{1}{20} \cdot 60 = 3.$$

3 Answer:

Answer: $M = ____{-5/2}$

c. [2 points] Find a number M that makes the following statement a correct conclusion of the Mean Value Theorem: There is a number c between 6 and 8 such that q'(c) = M.

Solution: $M = \frac{g(8) - g(6)}{8 - 6} = \frac{3 - 8}{2} = -\frac{5}{2}.$

d. [2 points] Use a right-hand Riemann Sum with 3 equal subdivisions to estimate $\int_{a}^{b} g(x) dx$.

Solution: 2(g(2) + g(4) + g(6)) = 2(2 + 5 + 8) = 2(15) = 30.

e. [1 point] Is the estimate in part d. an overestimate or an underestimate? Circle your answer below, or circle NEI if there is not enough information to tell.

UNDERESTIMATE

OVERESTIMATE

NEI

Solution: It is an overestimate since q(x) is increasing on [0, 6].

f. [2 points] How many equal subdivisions of [0, 6] are needed so that the difference between the left-hand and right-hand Riemann sum approximations of $\int_{0}^{\infty} g(x) dx$ is exactly 1?

Solution: If we divide [0,6] into n subintervals, then $\Delta x = \frac{6-0}{n}$, and the error is $|g(6)-g(0)|\frac{6}{n} =$ 1. Solving for *n* gives $n = 6|g(6) - g(0)| = 6 \cdot 8 = 48$. 48

Answer: $n = _$