
On my honor, as a student,
I have neither given nor received
unauthorized aid on this academic work. Initials:

Do not write in this area

Math 116 — First Midterm — October 9, 2017

Your Initials Only: Your U-M ID # (not uniqname):

Instructor Name: Section #:

1. Do not open this exam until you are told to do so.

2. Do not write your name anywhere on this exam.

3. This exam has 11 pages including this cover. There are 10 problems.
Note that the problems are not of equal difficulty, so you may want to skip over and return
to a problem on which you are stuck.

4. Do not separate the pages of this exam. If they do become separated, write your UMID (not
name) on every page and point this out to your instructor when you hand in the exam.

5. Note that the back of every page of the exam is blank, and, if needed, you may use this
space for scratchwork. Clearly identify any of this work that you would like to have graded.

6. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

7. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it.

8. The use of any networked device while working on this exam is not permitted.

9. You may use any one calculator that does not have an internet or data connection except a
TI-92 (or other calculator with a “qwerty” keypad). However, you must show work for any
calculation which we have learned how to do in this course.
You are also allowed two sides of a single 3′′ × 5′′ notecard.

10. For any graph or table that you use to find an answer, be sure to sketch the graph or write
out the entries of the table. In either case, include an explanation of how you used the graph
or table to find the answer.

11. Include units in your answer where that is appropriate.

12. Problems may ask for answers in exact form. Recall that x =
√

2 is a solution in exact form
to the equation x2 = 2, but x = 1.41421356237 is not.

13. Turn off all cell phones, smartphones, and other electronic devices, and remove all
headphones, earbuds, and smartwatches. Put all of these items away.

14. You must use the methods learned in this course to solve all problems.

Problem Points Score

1 12

2 13

3 5

4 10

5 10

Problem Points Score

6 8

7 12

8 10

9 8

10 12

Total 100
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1. [12 points] The table below gives several values of a decreasing, differentiable function G.

x −4 −3 −2 −1 0 1 2 3 4

G(x) 7 5 4 2 −2 −3 −6 −8 −9

a. [4 points] Use the midpoint rule with 3 subintervals to estimate

∫ 2

−4

(
tG(t) + 4

)
dt.

Carefully write out each of the terms involved in your estimate.
You do not have to simplify. However, no variables or function names should appear in
your answer.

In parts b and c below, calculate the exact numerical value of the integral.
If it is not possible to do so, write “not possible”. Show each step of your work clearly.

b. [3 points]

∫ 2

−2
6G′(2y) dy

c. [5 points]

∫ 3

0

G′(x)G(x)

(2G(x)− 3)(G(x) + 1)
dx
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2. [13 points]

Consider the function c defined for all real
numbers x by the formula

c(x) =
ex + e−x

2
.

A portion of the graph of this “catenary”
function is shown as the solid curve in the
graph on the right. −4 −3 −2 −1 1 2 3 4

3

6

9

S

x

y

y = c(x)

y = c(3)

Let S be the region bounded by the graph of y = c(x) and the line y = c(3).
This region S is shown in the figure above.

a. [2 points] Write, but do not evaluate, an expression involving one or more integrals that
gives the area of S.

b. [5 points] A solid is obtained by rotating the region S about the x-axis.
Write, but do not evaluate, an expression involving one or more integrals that gives the
volume of this solid.

c. [3 points] Write, but do not evaluate, an expression involving one or more integrals that
gives the arc length of the graph of y = c(x) over the interval −3 ≤ x ≤ 3.
(Your answer should not involve any function names.)

d. [3 points] Will the midpoint rule with 2000 subdivisions give an underestimate or an

overestimate of the value of

∫ 0

−3
c(x) dx?

Circle your answer below. Then briefly explain your reasoning in the space on the right.

Circle one:

Underestimate

Overestimate

Neither (They are equal)

Cannot be determined

Briefly explain your reasoning.
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3. [5 points] Suppose A is a differentiable function defined for all real numbers.

The function A has all of the following properties:

◦ A is an even function.

◦
∫ 2

−2
A(x) dx = 5.

◦ A′(2) = 5.

◦ The average value of A on the interval [2, 4] is 5/2.

Based on the properties above, circle all of the statements below that must be true.
Circle “none of these” if none of the statements must be true.
You must circle at least one choice to receive any credit for this problem. No credit will be
awarded for unclear markings. No justification is necessary.

i. A′(−2) = 5.

ii.

∫ 2

0
A(x) dx = 5.

iii.

∫ 4

2
A(x) dx−

∫ −4
−2

A(x) dx = 0.

iv.

∫ 2

−2
xA′(x) dx = 4A(2)− 5.

v. The function R defined by R(x) =

∫ x

−x
A′(t) dt must be a constant function.

vi. none of these
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4. [10 points]

A farming cooperative stores its alfalfa seed in a giant
funnel. The funnel is in the shape of a right circular
cone with height 100 feet and radius 50 feet at the
top. A diagram of such a cone is shown in the figure
on the right.

50 ft

100 ft

h ft

∆h ft

a. [4 points] Write an expression in terms of h that approximates the volume (in cubic feet)
of a horizontal slice of the funnel of thickness ∆h feet at a height of h feet above the
bottom of the funnel. (Assume ∆h is positive but very small.)

b. [6 points] For parts i and ii below, assume that the funnel is full of alfalfa seed. The
funnel is clogged, so the alfalfa seed must be removed from above in order to clear the
clog. Assume that alfalfa seed weighs 48 pounds per cubic foot.

i. Using your answer to part (a), write an expression in terms of h that approximates
the work, in foot-pounds, done in moving a horizontal slice of seed of thickness ∆h
that is h feet above the bottom of the funnel to the top of the funnel.

ii. Write, but do not evaluate, an expression involving one or more integrals that gives
the total work, in foot-pounds, that must be done to empty the tank of seed.
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5. [10 points] Suppose that the function w(t) shown in the graph below models the power, in
kilowatts, that is harvested at a particular solar panel installation in northern Norway at
time t, where t is measured in hours after midnight on a typical summer day.
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240

y = w(t)

t

y

Consider the function W defined by

W (x) =

∫ 2x+4

2x
w(t) dt.

Be sure to show your work very carefully on all parts of this problem.

a. [3 points] Estimate W (4). In the context of this problem, what are the units on W (4)?

Answer: W (4) ≈ Units:

b. [4 points] Estimate W ′(4). In the context of this problem, what are the units on W ′(4)?

Answer: W ′(4) ≈ Units:

c. [3 points] Estimate the value(s) of x at which W (x) attains its maximum value on the
interval 0 ≤ x ≤ 8. If there are no such values, explain why.
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6. [8 points] A rattleback top is a toy that exhibits interesting physical properties. The toy can
be modeled by a solid whose base is the region between the graphs of j(x) and −j(x), shown
below. The cross sections perpendicular to the x-axis are semicircles.

−2 −1 1 2

−0.5

0.5
y = j(x)

y = −j(x)

x

y

The graph of j(x) is solid, the graph of −j(x) is dashed, and the units on both axes are
centimeters. Both graphs are bounded between the vertical lines x = −2 and x = 2.

a. [5 points] Set up, but do not evaluate, an expression involving one or more integrals that
gives the volume, in cubic centimeters, of the solid rattleback top. Your answer may
involve the function name j.

b. [3 points] In order to make the rattleback top spin like a top, it is made out of plastic
that has a mass density given by the function δ(x) grams per cubic centimeter, where x
is the x-coordinate in the diagram above. Set up, but do not evaluate, an expression
involving one or more integrals that gives the mass, in grams, of the rattleback top.
Your answer may involve the function names j and/or δ.
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7. [12 points] Maria has a toy car that drives around her flat backyard. She describes the path
of the car by typing a pair of parametric equations into a computer navigation system.
The computer controller uses x- and y-coordinates, where the units of the axes are meters,
the point where Maria will be standing corresponds to the origin (x, y) = (0, 0), the positive
y-axis points north, and the positive x-axis points east. The car’s battery will only last 60
minutes, so Maria sets the domain of each of her parametric equations to be 0 ≤ t ≤ 60,
where t is measured in minutes.
Maria enters the parametric equations x = f(t) and y = g(t)

where f and g are the functions shown in the graphs below.

10 20 30 40 50 60

−20

−10
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20
x = f(t)

t

x

10 20 30 40 50 60
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y = g(t)

t

y

a. [3 points] The tangent line to the graph of y = g(t) at the point t = 40 has equation
y − 10 = −2(t− 40). (This is the dashed line shown in the ty-plane above.) Use this
information to compute the instantaneous speed of Maria’s car at time t = 40.
Be sure to show your work clearly.

b. [2 points] At time t = 0, the car starts at Maria’s location. Approximately how many
meters away from Maria will the car be at time t = 60 (when it will run out of power)?
Circle the one best estimate from among the choices below.

0 m 150 m 300 m 450 m 600 m 750 m

c. [3 points] At which of the times listed below is the slope of Maria car’s path in the
xy-plane the least (most negative)? Circle the one best answer from among the choices
below.

t = 15 t = 20 t = 28 t = 32 t = 38

d. [4 points] Maria’s friend William programs his car to move according to the parametric
equations

x =

∫ t

0
f(s) ds and y =

∫ t

0
g(s) ds

where f and g are the functions shown in the graphs above. Compute the instantaneous
speed of William’s car at time t = 20. Be sure to show your work clearly.
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8. [10 points] A portion of the graph of a function h is shown below. The domain of h(x)
includes the interval −1 ≤ x ≤ 5.

Note the following:

• h(x) is linear on each of the intervals
[1, 2], [2, 3], and [4, 5].

• The portion of the graph of y = h(x) for
−1 < x < 1 is symmetric across the
y-axis.

• The area of shaded region A is 4/3.

• The area of shaded region B is 13/3.

−1 1 2 3 4 5

−2

−1

1

A

B

y = h(x)

x

y

Throughout this problem, the function H is the antiderivative of h satisfying H(1) = 2.

a. [2 points] For each of the following, compute the exact value. Show your work.

i. H(−1)

Answer: H(−1) =

ii. H(2)

Answer: H(2) =

b. [8 points] Use the axes below to carefully sketch a graph of y = H(x) for −1 ≤ x ≤ 5.

• Clearly label the coordinates of the points
on your graph at x = 0, 3, and 5.

• Be sure that local extrema and concavity
are clear.

• If there are features of this function that
are difficult for you to draw, indicate these
on your graph.

−1 1 2 3 4 5
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y = H(x)

x

y
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9. [8 points]
During the construction of a skyscraper, a 200 meter tall
crane lifts a steel beam from the ground to a height of 175
meters. The steel beam has a mass of 50 kilograms. The
crane has a chain that is also made of steel, and the chain
has a mass of 15 kilograms per meter. The total length of
the chain is 200 meters, but as the beam is lifted, the crane
no longer needs to lift any of the chain that has already
been “reeled in”, i.e. has already reached the top of the
crane.

ch
a
in

crane

beam

B m

200 m

For this problem, you may assume the acceleration due to gravity is g = 9.8 m/s2 .

a. Write an expression in terms of B that gives the total mass, in kilograms, of the steel
beam together with the chain that has not yet been reeled in at the moment that the
steel beam is B meters above the ground.

b. Assuming ∆B is very small but positive, write an expression in terms of B that
approximates the work done by the crane in lifting the steel beam up ∆B meters
starting from a height of B meters above the ground. Assume that the weight of the
chain being lifted is constant over this very short distance. Include units.

c. Write, but do not evaluate, an expression involving one or more integrals that gives the
total work that must be done by the crane in order to lift the steel beam from the
ground to a height of 175 meters. Include units.
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10. [12 points] For each of the questions below, circle all of the available correct answers.
Circle “none of these” if none of the available choices are correct.
You must circle at least one choice to receive any credit.
No credit will be awarded for unclear markings. No justification is necessary.

a. [4 points] Suppose a function f and both its derivative f ′ and second derivative f ′′ are
defined and continuous on the entire real line (−∞,∞). Which of the following functions
must be antiderivatives of the function t2f ′(t) on (−∞,∞)?

i.

∫ t

1
2yf ′′(y) dy ii. 5 +

∫ t

−3
w2f ′(w) dw iii. 0.25

∫ 2t

0
x2f ′(0.5x) dx

iv. t2f(t) +

∫ 2

t
2xf(x) dx v. f ′(1) +

∫ 4

1
t2f ′(t) dt vi. none of these

b. [4 points] Suppose that g is a function that is continuous, negative, and decreasing on
the interval [−4, 4] and that n is a positive integer.

Consider the definite integral

∫ 4

−4
g(x) dx and the four approximations of

∫ 4

−4
g(x) dx

given by RIGHT(n), LEFT(n), TRAP(n), MID(n).
Which of the following could be true about the relationships between these five
numbers?

i. TRAP(n) <

∫ 4

−4
g(x) dx ii. TRAP(n) >

∫ 4

−4
g(x) dx

iii. MID(n) <

∫ 4

−4
g(x) dx iv. MID(n) >

∫ 4

−4
g(x) dx

v. RIGHT(n) <

∫ 4

−4
g(x) dx < LEFT(n) vi. TRAP(n) = MID(n)

vii. LEFT(n) <

∫ 4

−4
g(x) dx < RIGHT(n) viii. none of these

c. [4 points] Suppose Q is a continuous function. A circular metal plate in the xy-plane
with radius 10 cm has density Q(r) grams per square centimeter at a distance of r
centimeters from the center of the plate. Which of the following statements must be true
about this plate?

i. The total mass of the plate is 100π ·Q(10) grams.

ii. The total mass of the plate is

∫ 10

−10
2πr ·Q(r) dr grams.

iii. The mass, in grams, of a very thin horizontal slice of the plate of height ∆y cm
located y cm above the center of the plate is approximately Q(y) times the area,
in cm2, of the slice.

iv. The total mass of the plate is

∫ 10

0
πr2 ·Q(r) dr grams.

v. none of these


