
Math 116 — Final Exam — December 14, 2022

Write your 8-digit UMID number
very clearly in the box to the right.

Your Initials Only: Instructor Name: Section #:

1. This exam has 11 pages including this cover.

2. There are 8 problems. Note that the problems are not of equal difficulty, so you may want to
skip over and return to a problem on which you are stuck.

3. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

4. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it.

5. You are allowed notes written on two sides of a 3′′ × 5′′ note card.

6. You are NOT allowed other resources, including, but not limited to, notes, calculators or
other devices.

7. For any graph or table that you use to find an answer, be sure to sketch the graph or write
out the entries of the table. In either case, include an explanation of how you used the graph
or table to find the answer.

8. Include units in your answer where that is appropriate.

9. Problems may ask for answers in exact form. Recall that x =
√
2 is a solution in exact form

to the equation x2 = 2, but x = 1.41421356237 is not.

10. You must use the methods learned in this course to solve all problems.

Problem Points Score

1 11

2 15

3 13

4 12

5 11

6 13

Problem Points Score

7 12

8 13

Total 100
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1. [11 points] Nancy is on an airplane traveling to see Carlos, and the flight is delayed. The
function f(t) is the probability density function (pdf) for how many hours, t, the flight will
be delayed. The function f(t) is given by

f(t) =


0 if t ≤ 0,

−3
4(t− 1)2 + 3

4 if 0 < t < 2,

0 if t ≥ 2

a. [6 points] Write a formula for the cumulative distribution function (cdf) F (t)
corresponding to the pdf f(t). Your answer should not involve any integrals or the letter
f(t). Write your answer using the partially given piecewise notation below.

F (t) =


b. [2 points] What is the probability that Nancy’s flight will be delayed less than 30

minutes?

c. [3 points] Carlos wants to find the mean amount of time the flight will be delayed, so he
can arrive at the airport at the right time. Write an explicit expression involving
integrals that gives the mean amount of time the flight will be delayed. Do not evaluate
your expression. Your answer should not contain the letter f .
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2. [15 points] The parts of this problem are unrelated to each other. Be sure to show work for
all parts, and circle your final answer.

a. [5 points] A leaking bag of sugar is lifted vertically from the ground to a height of 10 feet
above the ground. The weight of the bag of sugar is 6−

√
x lbs when it has been lifted

x feet above the ground. Find the work done lifting the bag, including units. Fully
evaluate any integrals, but you do not need to simplify your answer.

Answer:

b. [5 points] Write an expression involving one or more integrals that gives the volume of
the solid obtained by rotating the region in the xy-plane bounded between the x-axis,
the parabola y = x2 + 1, the line x = −1 and the line x = 1, about the line x = −2. Do
not evaluate your integral(s).

Answer:

c. [5 points] The function f(x) = x4 + 5 can be rewritten in the form
f(x) = (x+ 1)4 +A(x+ 1)3 +B(x+ 1)2 +C(x+ 1) +D, where A,B,C,D are constants.
Find the values of A,B,C,D using Taylor series. Other methods used to find the
constants will not be given credit.

A=

B=

C=

D=
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3. [13 points] A function g(x) has Taylor series centered at x = 5 given by

∞∑
n=0

(−1)n(x− 5)n+1

(n+ 1) · 4n
.

a. [2 points] Is g(x) increasing or decreasing near x = 5? Briefly justify your answer.

b. [3 points] Find g(1001)(5).

g(1001)(5)=

c. [8 points] Given that the radius of convergence of this Taylor series is 4 (do NOT show
this), find the interval of convergence of this Taylor series. Show all your work,
including full justification for series behavior.

Interval of convergence:
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4. [12 points] Katya and Miles are sailing in the ocean, which is represented by the xy-plane.
Katya’s position, t hours after 12:00pm, is given by

x = 3t, y = sin
(πt
2

)
,

while Miles’ position, t hours after 12:00pm, is given by

x = t2 + 2, y = cos(πt)− 1.

In this problem, x and y have units in kilometers. All above equations are valid for 0 ≤ t ≤ 6.

a. [2 points] What is Miles’ position at 3:00pm?

x = y =

b. [4 points] Will Katya and Miles ever collide during their journey? If so, at what time(s)
will this occur? Justify your answer.

The time(s) is/are

c. [3 points] What is the slope of the tangent line to Katya’s path at t = 4?

The slope is

d. [3 points] Write an expression involving one or more integrals that gives the distance, in
kilometers, Miles traveled between 1:00pm and 4:00pm. Do not evaluate your
integral(s).

The distance is
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5. [11 points] The parts of this question relate to the following polar graph, defined by the
polar curve r(θ) = −1 + 2 cos(θ), on the domain [0, 2π]. Both the solid and dashed curves are
part of the graph of r(θ).

−1 1 2 3

−2

−1

1

2

x

y

a. [2 points] What are all the angles θ, with 0 ≤ θ ≤ 2π, for which the graph passes through
the origin?

Answer(s):

b. [2 points] Determine the interval(s) within [0, 2π] for which θ traces out the dashed
portion of the graph.

Answer(s):

c. [3 points] Write, but do not evaluate, an expression involving one or more integrals
which gives the area enclosed by the dashed portion of the graph.

The area is
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5. (continued) For your convenience, the polar graph referenced by this problem is
reproduced here:

−1 1 2 3

−2

−1

1

2

x

y

d. [4 points] Write, but do not evaluate, an expression involving one or more integrals
which gives the arc length of the solid portion of the graph.

The arc length is
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6. [13 points] Some values of the function f(x), its derivatives, and second derivatives are given
in the table below. Assume for all positive integers n that f (n)(x) is continuous for all real
numbers x.

x -2 0 2 4 6

f(x) 1 2 0 1 2

f ′(x) 3 2 1 0 -2

f ′′(x) -3 -2 0 2 1

Using the information given above, find the following. Be sure to show all of your work. Your
answers should not involve the letter f , but you do not need to simplify them.

a. [4 points] Find

∫ 2

−2
f ′(x)f ′′(x) dx.

Answer:

b. [3 points] Find the second degree polynomial that best approximates f(x) near x = 6.

f(x) ≈

c. [3 points] Find lim
x→0

f(x)− 2 + x2

x

The limit is

d. [3 points] Find the approximate value of

∫ 6

−2
x2f(x) dx using MID(2).

∫ 6

−2
x2f(x) dx ≈
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7. [12 points] The rate of vertical growth r(t) of a tree, in meters per month, is given by

r(t) =
10

(t+ 1)3/2
.

Here, t is measured in months after the tree was planted. When the tree was planted
its height was 1 meter.

a. [4 points] Write an expression, possibly involving one or more integrals, for the height of
the tree after exactly 1 year has passed since planting it. You do not need to evaluate
your integral(s).

b. [2 points] Let h(t) be the height of the tree, in meters, t months after it was planted.
Write an expression, possibly involving one or more integrals, for the function h(t). You
do not need to evaluate your integral(s).

c. [6 points] Assuming the tree lives long enough, will the tree ever grow more than 20
meters tall? Justify your answer, and be sure to use proper notation.
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8. [13 points] For each part of this problem circle ALL correct answers. There may be
more than one correct answer for each part. You do not need to show your work.

a. [4 points] Which of the following give a parametrization of the top half of the unit
circle centered at the origin in the xy-plane?

(A) x = − sin(t), y = − cos(t), π
2 ≤ t ≤ 3π

2 .

(B) x = sin(t), y = cos(t), π
2 ≤ t ≤ 3π

2 .

(C) x = t, y =
√
1− t2, −1 ≤ t ≤ 1.

(D) x = cos(t), y = sin(t), π ≤ t ≤ 2π.

(E) NONE OF THESE

b. [4 points] Which of the following points given in polar coordinates are the same point as
(x, y) = (−1, 1) in the xy-plane?

(A) (r, θ) = (2, 3π4 )

(B) (r, θ) = (−2, π4 )

(C) (r, θ) = (
√
2,−3π

4 )

(D) (r, θ) = (−
√
2, 7π4 )

(E) NONE OF THESE

c. [5 points] Which of these options make the following statement true?

The series
∞∑
n=1

1

n1/2 + n2 + n3/2
. . .

(A) Diverges by the limit comparison test when compared to
∞∑
n=1

1

n1/2
.

(B) Diverges by the comparison test when compared to
∞∑
n=1

1

n1/2
.

(C) Diverges by the comparison test when compared to
∞∑
n=1

1

n3/2
.

(D) Converges by the comparison test when compared to
∞∑
n=1

1

n3/2
.

(E) Converges by the limit comparison test when compared to

∞∑
n=1

1

n2
.

(F) Converges because 1
n1/2+n2+n3/2 → 0 as n → ∞.

(G) NONE OF THESE
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“Known” Taylor series (all around x = 0):

sin(x) =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · · for all values of x

cos(x) =
∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · for all values of x

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ · · ·+ xn

n!
+ · · · for all values of x

ln(1 + x) =

∞∑
n=1

(−1)n+1xn

n
= x− x2

2
+

x3

3
− · · ·+ (−1)n+1xn

n
+ · · · for −1 < x ≤ 1

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · for −1 < x < 1

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · for −1 < x < 1

Select Values of Trigonometric Functions:

θ sin θ cos θ

π
6

1
2

√
3
2

π
4

1√
2

1√
2

π
3

√
3
2

1
2


