Math 116 - Final Exam - December 8, 2023

Write your 8-digit UMID number very clearly in the box to the right.

\square

Your Initials Only: __ Instructor Name: \qquad Section \#: \qquad

1. Please neatly write your 8-digit UMID number, your initials, your instructor's first and/or last name, and your section number in the spaces provided.
2. This exam has 13 pages including this cover.
3. There are 10 problems. Note that the problems are not of equal difficulty, so you may want to skip over and return to a problem on which you are stuck.
4. Please read the instructions for each individual problem carefully. One of the skills being tested on this exam is your ability to interpret mathematical questions, so instructors will not answer questions about exam problems during the exam.
5. Show an appropriate amount of work (including appropriate explanation) for each problem, so that graders can see not only your answer but how you obtained it.
6. If you need more space to answer a question, please use the back of an exam page. Clearly indicate on your exam if you are using the back of a page, and also clearly label the problem number and part you are doing on the back of the page.
7. You are allowed notes written on two sides of a $3^{\prime \prime} \times 5^{\prime \prime}$ note card. You are NOT allowed other resources, including, but not limited to, notes, calculators or other electronic devices.
8. For any graph or table that you use to find an answer, be sure to sketch the graph or write out the entries of the table. In either case, include an explanation of how you used the graph or table to find the answer.
9. Include units in your answer where that is appropriate.
10. Problems may ask for answers in exact form. Recall that $x=\sqrt{2}$ is a solution in exact form to the equation $x^{2}=2$, but $x=1.41421356237$ is not.
11. You must use the methods learned in this course to solve all problems.

Problem	Points	Score
1	12	
2	8	
3	12	
4	6	
5	7	
6	10	

Problem	Points	Score
7	16	
8	9	
9	8	
10	12	
Total	100	

1. [12 points] Compute the exact value of each of the following, if possible. Your answers should not involve integration signs, ellipses or sigma notation. For any values which do not exist, write DNE. You do not need to show work.
a. [2 points] The integral $\int_{-10}^{10}(f(x)+1) \mathrm{d} x$, where $f(x)$ is an odd function.

Answer: \qquad
b. [2 points] The integral $\int_{-3}^{4} \frac{1}{x^{4}} \mathrm{~d} x$.

Answer: \qquad
c. [2 points] The sum $\sum_{n=0}^{2023} 7(5)^{n}$.

Answer:
d. [2 points] The radius of convergence for the Taylor series centered around $x=0$ for the function $g(x)=\left(1+3 x^{2}\right)^{1 / 5}$.

Answer:
e. $[2$ points $]$ The infinite sum $(0.5)^{2}-\frac{(0.5)^{4}}{2}+\frac{(0.5)^{6}}{3}-\cdots+\frac{(-1)^{n+1}(0.5)^{2 n}}{n}+\cdots$.

Answer:
f. [2 points] The value of $h^{\prime \prime}(2)$ where the fourth-degree Taylor polynomial for $h(x)$ about $x=2$ is given by $P_{4}(x)=2+9(x-2)-81(x-2)^{4}$.

Answer:
2. [8 points] Consider the function $G(x)=x^{3} \cos (2 x)$.
a. [4 points] Give the first four nonzero terms of the Taylor series of $G(x)$ centered about $x=0$.

Answer:

b. [4 points] Find $G^{(2023)}(0)$. You do not need to simplify.
3. [12 points] Antonia the ant is entering her first bug race. The track runs from the start line at the south end, represented by $y=0$, to the finish line at the north end, represented by $y=4$. All distances are given in feet.
Antonia's position t seconds after the race begins is given in parametric equations by:

$$
x=\sin \left(\frac{\pi t}{2}\right), \quad y=1.5^{t}-1
$$

a. [2 points] What is Antonia's position 2 seconds into the race?

$$
x=
$$

\qquad

$$
y=
$$

\qquad
b. [3 points] At what time does Antonia reach the finish line?

The time is $t=$ \qquad
c. [3 points] What is the first time during the race that Antonia is travelling directly north?

The time is $t=$ \qquad
d. [4 points] Write an expression involving one or more integrals that gives the total distance, in feet, that Antonia traveled during the race. Do not evaluate your integral(s).
\qquad
4. [6 points]
a. [3 points] Bertie the beetle enters a different bug race. This race lasts for a thrilling 10 seconds. His position t seconds into his race is given by $(x(t), y(t))$ where

$$
x(t)= \begin{cases}\frac{1}{2} t, & 0 \leq t<2 \\ \frac{1}{2}(4-t), & 2 \leq t<6 \\ \frac{1}{2}(t-8), & 6 \leq t<10\end{cases}
$$

and where $y(t)=\ln (t+1)$. Which of the following graphs best represents the path he follows? Circle the one best answer.
(A)

(A)

(B)
(D)

b. [3 points] Carlos the centipede is training for a bug race by running in circular laps. On his first lap, Carlos' position t seconds after he began his lap is given by the parametric equations $x=f(t)$ and $y=g(t)$. For the second lap, his position t seconds after the lap begins is given by the parametric equations $x=f(2 t)$ and $y=g(2 t)$.
How is Carlos' path in the second lap different from the first? Circle the one best answer from the options below.
(I) Carlos follows a path which has the same shape as the one for the first lap, but which has half the diameter.
(II) Carlos follows a path which has the same shape as the one for the first lap, but which has twice the diameter.
(III) Carlos follows the same path as before but travels at half the speed.
(IV) Carlos follows the same path as before but travels at twice the speed.
5. [7 points] A local beet company, Dope Beets Inc., is developing a new beet with an adjustable growth rate for its many different customers. The growth rate of their new beet, measured in pounds per day, t days after a beet is planted, is given by

$$
r(t)=\frac{5 t^{2}}{t^{k}+t+1}
$$

for some adjustable value $k>1$.
a. [4 points] Suppose a new beet initially weighs 2 pounds. Write an expression involving an integral for the weight, in pounds, of the beet t days after it is planted.

Abstract

Answer: b. [3 points] Dope Beets Inc. wants to adjust the value of k such that a planted beet will never have infinite weight, even if the beet is allowed to grow forever. Which values of k would keep the weight finite? Give your answer as a value, list of values, or interval, as appropriate. No justification is required.

Answer:
6. [10 points] Consider an infinitely differentiable function $f(x)$. The following table gives some values of $f(x)$ and its derivatives at $x=1$:

$f(1)$	$f^{\prime}(1)$	$f^{\prime \prime}(1)$	$f^{\prime \prime \prime}(1)$
$\pi / 4$	$1 / 2$	$-1 / 4$	2

a. [4 points] Write down $P_{3}(x)$, the third-degree Taylor polynomial of $f(x)$ about $x=1$. You do not need to simplify.

$$
P_{3}(x)=
$$

\qquad
b. [3 points] Recall that $f(x) \approx P_{3}(x)$ near $x=1$. Use this and the fact that $f(1.5)=\pi / 3$ to write an approximation for π. You do not need to simplify your answer. Your answer should not contain the symbol π.

$$
\pi \approx
$$

\qquad
c. [3 points]

Use the Taylor polynomial from part \mathbf{a}. to approximate the definite integral

$$
\int_{1}^{1.1} f(x) \mathrm{d} x .
$$

You do not need to simplify your answer.
7. [16 points] A particle moves along a path given by the polar curve $r=\cos (\theta / 2), 0 \leq \theta \leq 4 \pi$. The polar curve is graphed below. A portion of the polar curve is dashed.

a. [4 points] The distance from the origin to the point labeled P is $\sqrt{3} / 2$. Find the Cartesian coordinates corresponding to the point labeled P.

$$
(x, y)=
$$

\qquad
b. [4 points] For what values of θ in $[0,4 \pi]$ does the particle pass through the origin?

$$
\theta=
$$

7. (continued) The graph of the polar curve $r=\cos (\theta / 2)$, with $0 \leq \theta \leq 4 \pi$, from the previous page is reproduced below:

c. [4 points] Determine the interval(s) within $[0,4 \pi]$ for which θ traces out the dashed portion of the graph.

Abstract

Answer: d. [4 points] Write an expression involving one or more integrals for the shaded area enclosed by the dashed portion of the particle's path. Do not evaluate your integral(s).

Answer:
8. [9 points] Gabriella is developing a new kind of vuvuzela. In order to come up with a new method, she first considers the old way she made her instruments.
a. [4 points] Gabriella initially made her vuvuzelas by considering a positive function $f(x)$, and forming a region \mathcal{R} between $y=f(x)$ and the x-axis on the interval $[2, \infty)$. She rotated \mathcal{R} about the x-axis to form the shape of the vuvuzela. Write an integral which gives the volume of the vuvuzela. Your answer will involve the function $f(x)$.

Answer:

b. [5 points] For her new batch of vuvuzelas, Gabriella considers an entirely different shape. The volume of the new design of vuvuzela is given by

$$
\int_{2}^{\infty} \frac{x}{\left(x^{2}+5\right)^{2}} \mathrm{~d} x
$$

Compute the value of this integral if it converges. If it does not converge, use a direct computation of the integral to show its divergence. Be sure to show your full computation, and be sure to use proper notation.

Circle one: Diverges Converges to
9. [8 points] A power series centered at $x=3$ given by

$$
\sum_{n=0}^{\infty} \frac{n^{2}+1}{2^{n}(n+2)}(x-3)^{n}
$$

The radius of convergence of this power series is 2 (do NOT show this). Find the interval of convergence of this power series. Show all your work, including full justification for series behavior.
10. [12 points] For the following questions, determine if the statement is ALWAYS true, SOMETIMES true, or NEVER true, and circle the corresponding answer. Justification is not required.
a. [2 points] Suppose $H(x)$ is a continuous function such that $H^{\prime}(x)>0$ and $H(x) \geq 0$ for all x. Then $H(x)$ is a cumulative distribution function (cdf).

Circle one: ALWAYS SOMETIMES NEVER
b. [2 points] If a_{n} is a sequence of positive numbers, and the sequence $S_{n}=a_{1}+\cdots+a_{n}$ converges to S, then a_{n} converges to S.

Circle one: ALWAYS SOMETIMES NEVER
c. [2 points] The average value of a continuous function $f(x)$ on the interval $[0,1]$ is given by $\int_{0}^{1} x f(x) \mathrm{d} x$.

Circle one: ALWAYS SOMETIMES NEVER
d. [2 points] $\int_{2}^{3} \frac{1}{x \ln (x)} \mathrm{d} x=\int_{2}^{3} \frac{1}{u} \mathrm{~d} u$.

Circle one: ALWAYS SOMETIMES NEVER
e. [2 points] If n is a fixed number which is bigger than 100 , and $\operatorname{MID}(n)$ and $\operatorname{LEFT}(n)$ both estimate $\int_{0}^{\pi / 2} \cos (x) \mathrm{d} x$, then

$$
\int_{0}^{\pi / 2} \cos (x) \mathrm{d} x \leq \operatorname{MID}(n) \leq \operatorname{LEFT}(n)
$$

Circle one:
ALWAYS
SOMETIMES
NEVER
f. [2 points] If $r=f(\theta)$ is a polar curve, then the arclength of the part of the curve in the first quadrant is given by $\int_{0}^{\pi / 2} \sqrt{(f(\theta))^{2}+\left(f^{\prime}(\theta)\right)^{2}} \mathrm{~d} \theta$.
"Known" Taylor series (all around $x=0$):

$$
\begin{array}{rlrl}
\sin (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots & & \text { for all values of } x \\
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots & & \text { for all values of } x \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots & & \text { for all values of } x \\
\ln (1+x) & =\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+\frac{(-1)^{n+1} x^{n}}{n}+\cdots & & \text { for }-1<x \leq 1 \\
(1+x)^{p} & =1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots & & \text { for }-1<x<1 \\
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots & \text { for }-1<x<1
\end{array}
$$

Select Values of Trigonometric Functions:

θ	$\sin \theta$	$\cos \theta$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$

