
Math 116 — Second Midterm
March 23, 2010

Name:

Instructor: Section:

1. Do not open this exam until you are told to do so.

2. This exam has 10 pages including this cover. There are 9 problems. Note that the problems
are not of equal difficulty, so you may want to skip over and return to a problem on which
you are stuck.

3. Do not separate the pages of this exam. If they do become separated, write your name on
every page and point this out to your instructor when you hand in the exam.

4. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

5. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it. Include units in your
answer where that is appropriate.

6. You may use any calculator except a TI-92 (or other calculator with a full alphanumeric
keypad). However, you must show work for any calculation which we have learned how to
do in this course. You are also allowed two sides of a 3′′ × 5′′ note card.

7. If you use graphs or tables to find an answer, be sure to include an explanation and sketch
of the graph, and to write out the entries of the table that you use.

8. Turn off all cell phones and pagers, and remove all headphones.

Problem Points Score

1 10

2 10

3 6

4 12

5 10

6 12

7 12

8 14

9 14

Total 100
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1. [10 points] There is a bucket, shaped like a cylinder, with a radius of 5 inches and a height of
20 inches. It has a circular hole in the bottom which has a radius of 1 inch. The bucket begins
full of water, but it flows out the hole in the bottom. Let t be the number of seconds since the
water began dripping from the bucket, and let V (t) denote the volume (in inches3) of water
remaining in the bucket at time t. Let h(t) be the depth of the water in the bucket at time t.

a. [2 points] Write a formula for the volume of water in the bucket, V (t), as a function of
the depth of the water in the bucket, h(t).

b. [8 points] The volume of water changes such that it satisfies the differential equation

dV

dt
= −0.6π

√
19.6h.

Solve for the depth of the water at time t = 10. Be sure to include units in your answer.
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2. [10 points] Determine if each of the following integrals diverges or converges. If the integral
converges, find the exact answer. If the integral diverges, write ”DIVERGES.” Show ALL
work and use proper notation. Calculator approximations will not receive credit.

a. [5 points]
∫ 2
0

3
x1/3dx

b. [5 points]
∫ 2
0

e−1/x

x2 dx
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3. [6 points]
a. [3 points] The following figure is the slope field for dy

dx = ay(b − y), where a and b are
constants.

with DEtools :

dfieldplot diff y x , x = y$ 1Ky , y x , x = 0 ..2,

y =K.2 ..1.2, arrows = line, dirgrid = 15, 15 , color = BLACK, axes = framed, labels = x, y ;

Warning, y is present as both a dependent variable and a name. 
Inconsistent specification of the dependent variable is 
deprecated, and it is assumed that the name is being used in 
place of the dependent variable.

x
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y
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0.6

0.8

1.0

1.2

Which of the following statements is true regarding a and b? Circle only one answer.

A. a > 0, b > 0 B. a > 0, b < 0 C. a < 0, b < 0 D. a < 0, b > 0

b. [3 points] The following figure is the slope field for dy
dx = ax + b, where a and b are

constants.

with DEtools :

dfieldplot diff y x , x = .5 xK .25, y x , x = 0 ..2,

y =K.2 ..1.2, arrows = line, dirgrid = 15, 15 , color = BLACK, axes = framed, labels = x, y ;
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Which of the following statements is true regarding a and b? Circle only one answer.
A. a > 0, b > 0 B. a > 0, b < 0 C. a < 0, b < 0 D. a < 0, b > 0
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4. [12 points] A bank account earns 2.5% annual interest compounded continuously. Continuous
payments are made out of the account at a rate of $15, 000 per year for 18 years.

a. [4 points] Write a differential equation describing the balance B = f(t), where t is in
years satisfying 0 ≤ t ≤ 18.

b. [4 points] Solve the differential equation you found in part (a) given an initial balance of
B0.

c. [4 points] What was the initial balance if the account has $10, 000 remaining 18 years
after the account was opened? Give your answer to the nearest penny.
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5. [10 points] Let t be the number of minutes a student waits for the Bursley-Baits bus. For
constants a and b, the probability density function giving the distribution of t is

p(t) =
{

0 if t < 0
ae−bt if 0 ≤ t <∞.

According to this density function, the mean waiting time for the bus is 8 minutes.
a. [6 points] Determine the exact values of the constants a and b. Answers supported only

by calculator work will not receive full credit. Write your final answers on the spaces
provided.

a = b =

b. [4 points] Using your answers from part (a), determine the exact value for median waiting
time. Include units in your answer. Answers supported only by calculator work will not
receive full credit.
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6. [12 points] The position of a particle at time t is given by x = cos
(
et
)
, and y = cos

(
3et
)
,

where both x and y are measured in cm, and t is measured in seconds.
a. [5 points] Find the exact speed of the particle at time t = 0. Show enough work to support

your answer and include units. Calculator approximations will not receive full credit.

b. [7 points] Use derivatives to determine the concavity of the particle’s path at time t = 0.
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7. [12 points] Suppose that functions f(x), g(x), and h(x) are continuous and differentiable for
x ≥ 1 and satisfy the condition that 0 ≤ f(x) ≤ g(x) ≤ h(x) for x ≥ 1. Furthermore, suppose
that

∫∞
1 g(x)dx converges.

You do not need to show your work for this page. No partial credit will be given.
a. [4 points] Consider the following group of statements:

I.
∫∞
1 h(x)dx diverges.

II.
∫∞
1 h(x)dx converges.

III.
∫ 3
1 h(x)dx converges.

Which of the above statements must be true? Circle ONE of the following choices:

A. I is true.

B. II is true.

C. III is true.

D. I and III are true.

E. II and III are true.

b. [4 points] Consider the following group of statements:
I.
∫∞
1 f(x)dx diverges.

II.
∫∞
1 f(x)dx converges.

III.
∫ 3
1 f(x)dx converges.

Which of the above statements must be true? Circle ONE of the following choices:

A. I is true.

B. II is true.

C. III is true.

D. I and III are true.

E. II and III are true.

c. [4 points] Consider the following group of statements:
I.
∫∞
1 (f(x) + g(x))dx converges.

II.
∫∞
1 (h(x) + g(x))dx converges.

III.
∫∞
1

g(x)
x dx converges.

Which of the above statements must be true? Circle ONE of the following choices:

A. I is true.

B. II is true.

C. III is true.

D. I and III are true.

E. II and III are true.
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8. [14 points] Consider the area contained above the line y = 0.8, and below the curve r =
2 sin(3θ). You may find the following figure helpful.

x

y
r = 2sin(3θ)

y = 0.8

a. [4 points] Find the (x, y) coordinates for the two points where y = 0.8 and r = 2 sin(3θ)
intersect as shown in the figure above. Show enough work to support your answer.

b. [4 points] Write an expression for the area that is specified. You do not need to evaluate
your expression.

c. [6 points] Calculate the perimeter that surrounds the specified area. You may round your
final answer to two decimal places.
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9. [14 points] An ice cube melts at a rate proportional to its surface area. Let V (t) denote the
volume (in cm3) of the ice cube, and let x(t) denote the length (in cm) of a side of the ice cube
t seconds after it begins to melt.

a. [4 points] Write a differential equation for V (t), the ice cube’s volume t seconds after it
started melting. Your differential equation may contain V , t and an unknown constant k.

b. [4 points] The ice cube’s initial volume is V0 > 0. Solve the differential equation you
found in part (a), finding V in terms of t, k, and V0.

c. [6 points] Graph the volume of the ice cube versus time given V (0) = V0. Be sure to label
your axes and any important features of your graph, including the time at which the ice
cube has completely melted.


