
Math 116 — Final Exam
April 21, 2016

UMID: Initials:

Instructor: Section:

1. Do not open this exam until you are told to do so.

2. Do not write your name anywhere on this exam.

3. This exam has 14 pages including this cover. There are 12 problems. Note that the problems
are not of equal difficulty, so you may want to skip over and return to a problem on which
you are stuck.

4. Do not separate the pages of this exam. If they do become separated, write your UMID on
every page and point this out to your instructor when you hand in the exam.

5. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

6. Show an appropriate amount of work (including appropriate explanation) for each problem
so that graders can see not only your answer, but also how you obtained it. Include units in
your answer where that is appropriate.

7. You may use a TI-84, TI-89, TI-Nspire or other approved calculator. However, you must
show work for any calculation which we have learned how to do in this course. You are also
allowed two sides of a 3′′ × 5′′ note card.

8. If you use graphs or tables to find an answer, be sure to include an explanation and sketch
of the graph, and to write out the entries of the table that you use.

9. Turn off all cell phones, pagers, and smartwatches, and remove all headphones.

Problem Points Score

1 8

2 12

3 12

4 5

5 6

6 4

7 6

8 9

9 6

10 14

11 5

12 8

Total 95
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1. [8 points] Suppose that f(x) is a continuous function, and F (x) is an antiderivative of f(x).

Assume that

∫ 1

0
F (x) dx = 3. A table of values for F (x) is given below.

x 1 2 3 4 5

F (x) 1 -2 -4 3 1

Calculate the following quantities exactly. Show your work and do not write any decimal
approximations.

a. [2 points]

∫ 4

2
f(x) dx

b. [2 points] The average value of f over the interval [3, 5].

c. [2 points]

∫ 1

0
xf(x) dx

d. [2 points]

∫ 1

0
f(2x+ 1) dx
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2. [12 points] In this problem you must give full evidence supporting your answer,
showing all your work and indicating any theorems about series you use.

a. [7 points] Show that the following series converges. Does it converge conditionally or
absolutely? Justify.

∞∑
n=1

(−1)n

n! + 2n

b. [5 points] Determine whether the following series converges or diverges:

∞∑
n=2

1

n lnn
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3. [12 points] In this problem we study the integral I =

∫ 1.5

1
lnx dx.

a. [2 points] Write a left Riemann sum with 5 subdivisions that approximates I, showing
all the terms in your sum. Circle your sum and leave all the terms in exact form.

b. [2 points] Use the midpoint rule with 5 subdivisions to approximate I, showing all the
terms in your sum. Circle your sum and leave all the terms in exact form.

c. [4 points] (i) Use the u-substitution u = x− 1 to find an integral J , which is equal to I.
Circle your answer.

(ii) Give P3(u), the 3rd degree Taylor polynomial around u = 0 for the integrand of the
integral J . Circle your answer.

(iii) Substitute P3(u) for the integrand of J and compute the resulting integral by hand.
Circle your answer.
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3. (continued)

d. [4 points] Finally find the exact value of I =

∫ 1.5

1
lnx dx using integration by parts. Give

your answer in exact form and show your work. Circle your answer.

4. [5 points]

The function g(x) satisfies the differential
equation y′ = ay2 − x. The table on the right
gives some information about g(x).

x g(x) g′(x)

1 1 2

a. [2 points] Find a.

b. [3 points] Approximate g(1.2) using Euler’s method with ∆x = 0.1.
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5. [6 points] O-guk is eating pizzas! All is well now, so he got hungry. He has put them next
to each other, as depicted below, so that he can devour them one after another. There are
infinitely many pizzas, and they have radii 1, 12 ,

1
3 ,

1
4 ,

1
5 , ...

The following figure shows the first five pizzas.

...1 1/2 1/3

a. [4 points] Write infinite series for the total area and the total perimeter of the pizzas.
You must write your series in sigma notation.

Total area:

Total perimeter:

b. [2 points] In the next two questions circle the correct answer.

Is the total area a finite number?
YES NO

Is the total perimeter a finite number?
YES NO
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6. [4 points] Determine the exact value of the infinite series in each of the following questions.
No decimal approximations are allowed. You do not need to show your work. Circle your
answer.

a. [2 points]
1

52
− 1

54
+

1

56
− 1

58
+

1

510
− 1

512
+ · · · =

b. [2 points]

∞∑
n=0

(−1)n52n

(2n+ 1)!
=

7. [6 points] Consider the differential equation y′ = 1− 2xy.

a. [4 points] Suppose k is an arbitrary constant. Show that the function

y(x) =
k +

∫ x
2 e

t2 dt

ex2

is a solution to the differential equation.

b. [2 points] Give the value of k so that the graph of the solution to the differential equation
passes through the point (2, 7).
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8. [9 points] Consider the function F (t) defined by the power series

F (t) =
∞∑
n=0

n(t− 5)2n

3n(n+ 1)
.

a. [6 points] Find the radius of convergence of the power series. Show all your work.

b. [3 points] Calculate F (40)(5). Give an exact answer.
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9. [6 points] O-guk is creating a can opener to open his many cans of juice. The opener is in the
shape of the shaded region enclosed by the two loops of the polar curve r = 2 sin(θ) + 1 and
the x- and y-axes.

r = 2 sin(θ) + 1

y

x

Write an expression involving integrals that gives the total area of the shaded region.
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10. [14 points] A function f has domain [0,∞), and its graph is given below. The numbers
A,B,C are positive constants. The shaded region has finite area, but it extends infinitely in
the positive x-direction. The line y = C is a horizontal asymptote of f(x) and f(x) > C for
all x ≥ 0. The point (1, A) is a local maximum of f .

y

x

C

B

A

1

f(x)

a. [5 points] Determine the convergence of the improper integral below. You must give
full evidence supporting your answer, showing all your work and indicating
any theorems about integrals you use.∫ 1

0

f(x)

x
dx
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10. (continued) For your convenience, the graph of f is given again. The numbers A,B,C
are positive constants. The shaded region has finite area, but it extends infinitely in the
positive x-direction. The line y = C is a horizontal asymptote of f(x) and f(x) > C for all
x ≥ 0. The point (1, A) is a local maximum of f .

y

x

C

B

A

1

f(x)

b. [3 points] Circle the correct answer. The value of the integral

∫ ∞
1

f(x)f ′(x) dx

is C −A is C2−A2

2 is B −A cannot be determined diverges

c. [3 points] Circle the correct answer. The value of the integral

∫ ∞
1

f ′(x) dx

is C −A is C2−A2

2 is C cannot be determined diverges

d. [3 points] Determine, with justification, whether the following series converges or diverges.

∞∑
n=1

(f(n)− C)
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11. [5 points] The Hanoi tower is made by rotating the region depicted below around the y-axis.
The region is made up of infinitely many adjacent rectangles. The nth rectangle has width 1

and height an =
1

n!(2n+ 1)
where n = 0, 1, 2, 3, .... The rectangle touching the y-axis corre-

sponds to n = 0. Note that the y-axis is not to scale.

x
1 2 3 4 5 6 7

y

a4

a3

a2

a1

a0

a5
.. .

Compute the volume of the Hanoi Tower. Give an exact answer.
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12. [8 points] Suppose that the power series

∞∑
n=0

an(x− 4)n converges when x = 0 and diverges

when x = 9. In this problem, you do not need to show your work.

a. [4 points] Which of the following could be the interval of convergence? Circle all that
apply.

[0, 8] [0, 7] (−1, 9) (−2, 10) (0, 8]

b. [2 points] The limit of the sequence an is 0.

ALWAYS SOMETIMES NEVER

c. [2 points] The series

∞∑
n=0

(−5)nan converges.

ALWAYS SOMETIMES NEVER
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“Known” Taylor series (all around x = 0):

sin(x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · · for all values of x

cos(x) =

∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · for all values of x

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ · · ·+ xn

n!
+ · · · for all values of x

ln(1 + x) =

∞∑
n=1

(−1)n+1xn

n
= x− x2

2
+
x3

3
− · · ·+ (−1)n+1xn

n
+ · · · for −1 < x ≤ 1

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · for −1 < x < 1

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · for −1 < x < 1


