
On my honor, as a student,
I have neither given nor received
unauthorized aid on this academic work. Initials:

Do not write in this area

Math 116 — Final Exam — April 26, 2019

Your Initials Only: Your U-M ID # (not uniqname):

Instructor Name: Section #:

1. Do not open this exam until you are told to do so.

2. Do not write your name anywhere on this exam.

3. This exam has 12 pages including this cover. The last page provides some potentially useful
formulas. You may separate the formula page from the exam, but please do turn it in along
with the exam. Otherwise, do not separate the pages of this exam. If pages do become
separated, write your UMID on every page and point this out to your instructor when you
hand in the exam.

4. There are 10 problems. Note that the problems are not of equal difficulty, so you may want
to skip over and return to a problem on which you are stuck.

5. Note that the back of every page of the exam is blank, and, if needed, you may use this
space for scratchwork. Clearly identify any of this work that you would like to have graded.

6. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

7. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it.

8. The use of any networked device while working on this exam is not permitted.

9. You may use any one calculator that does not have an internet or data connection except a
TI-92 (or other calculator with a “qwerty” keypad). However, you must show work for any
calculation which we have learned how to do in this course.
You are also allowed two sides of a single 3′′ × 5′′ notecard.

10. For any graph or table that you use to find an answer, be sure to sketch the graph or write
out the entries of the table. In either case, include an explanation of how you used the graph
or table to find the answer.

11. Include units in your answer where that is appropriate.

12. Problems may ask for answers in exact form. Recall that x =
√

2 is a solution in exact form
to the equation x2 = 2, but x = 1.41421356237 is not.

13. Turn off all cell phones, smartphones, and other electronic devices, and remove all
headphones, earbuds, and smartwatches. Put all of these items away.

14. You must use the methods learned in this course to solve all problems.

Problem Points Score

1 14

2 8

3 10

4 8

5 9

Problem Points Score

6 11

7 13

8 12

9 7

10 8

Total 100
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1. [14 points] Hannah Haire and Ryan Rabbit meet for one last race. Once again, they both
start at the west side of a large square field that is 10 km wide; it will end when one reaches
the east side. The racers’ (x, y) positions are given by the parametric equations below, where
(0, 0) represents the southwest corner of the field, x represents kilometers east of this corner,
y represents kilometers north of this corner, and t ≥ 0 is measured in hours after the race
begins.

Hannah Haire:

x = t2

y =
t2

2
+ 2

Ryan Rabbitt:

{
x = 4t− t2

y = t2 − t+ 1

Be sure to justify your answers to the following questions algebraically.

a. [2 points] Who is going faster two hours into the race?

Answer:

b. [3 points] The race ends when the first racer reaches the east side of the field. When
does the race end? Who wins?

Answer: Race ends at t = Winner: Hannah Ryan Tie

c. [3 points] Write an integral representing the distance, in km, that Ryan runs during the
race.

Answer:

d. [3 points] Find all times at which Ryan and Hannah are in the same spot on the field. If
there are none, write “none”.

Answer: t =

e. [3 points] Find all times at which Ryan is facing directly northeast (that is, halfway
between directly north and directly east). If there are none, write “none”.

Answer: t =
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2. [8 points]

The castar, a coin widely used in
Middle-Earth, allegedly has the shape
graphed to the right. The outer perimeter
can be modeled by the implicit equation

x4 + y4 = 1

and the perimeter of the hole in the middle is
a square. To help his fellow Hobbits detect
counterfeit coins, Samwise Gamgee, the
Mayor of the Shire, is working on obtaining
the specifications of a genuine castar. Sam
needs your help.

−1 1

−1

1

a. [2 points] Find a function f(θ) so that the outer edge of the castar is given by the
function r = f(θ).

Answer: f(θ) =

b. [3 points] Write an expression involving one or more integrals that gives the total area of
the quarter of a castar in the first quadrant (shaded above).

Answer:

c. [3 points] Approximate the area of a castar by estimating your integral(s) from part (b)
using TRAP(2). Write out all the terms in your sum(s).

Answer:
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3. [10 points] A group of scientists of S.H.I.E.L.D. are investigating the Battle of Sokovia,
trying to understand how Ultron lifted the capital city of Sokovia up into the sky. They use
data available to them to model the situation.
Pay careful attention to the units involved in the data they use.

a. [5 points] The scientists find that they can model the part of the city that was lifted by
the shape of a cylinder of radius 2 kilometers and height 100 meters. The density δ(r), in
kilograms per cubic meter, is a function of distance r meters away from the central axis
of the cylinder. Let M be the total mass, in kilograms, of the part of the city that was
lifted. Write an expression involving one or more integrals that gives the value of M .

Answer: M =

b. [5 points] You may use M and δ(r) from part a. for this part.
Ultron lifted the city at a constant rate of 2 meters per second to a height of 1000 meters
above the ground. While he lifted it, a small portion of the city kept detaching from the
rising part at a constant rate of p kilograms per second. Write an expression involving
one or more integrals that gives the total work, in Joules, it takes to complete the lifting
process. Your answer may be in terms of m, g, δ(r), and M , where g is the gravitational
constant, g ≈ 9.8 m/s2.

Answer:
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4. [8 points] Four slope fields are given below.

x

y

−1 1

−2

−1

1

2(I)

x

y

−1 1

−2

−1

1

2(III)

x

y

−1 1

−2

−1

1

2(II)

x

y

−1 1

−2

−1

1

2(IV)

a. [4 points] Suppose a and b are constants.
Which one of the slope fields above could
be the slope field for the differential

equation
dy

dx
= ax2(x− b)? (Circle one.)

(I) (II)

(III) (IV)

Based on this slope field, which of the following must be true about a?

a > 0 a = 0 a < 0 None of these

Based on this slope field, which of the following must be true about b?

b > 0 b = 0 b < 0 None of these

b. [4 points] Find all equilibrium solutions of slope field (I) (on the upper left side) and
determine whether they are stable. If there are no equilibrium solutions, write “none”.

Stable equilibrium solutions: Other equilibrium solutions:
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5. [9 points] Determine whether each of the following series converges or diverges. Fully justify
your answer, including carefully showing all work for any computations. Include any
convergence tests used.

a. [4 points]
∞∑
n=1

3− sin(n4)

n2

Circle one: Converges Diverges
Justification:

b. [5 points]

∞∑
n=2

1

n
√

lnn

Circle one: Converges Diverges
Justification:
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6. [11 points] Consider the function g(x) defined for all real numbers represented by the Taylor
series

g(x) =
∞∑
n=1

(−1)n−1
22n−1

(n+ 1)!
x2n.

a. [3 points] Find the values of g(2019)(0) and g(2020)(0). You do not need to simplify.
Answer: g(2019)(0) = g(2020)(0) =

b. [2 points] Find P4(x), the Taylor polynomial of g(x) of degree 4 near x = 0.

Answer: P4(x) =

c. [3 points] Define

G(x) =

∫ x

−1
g(t) dt.

Use P4(x) to estimate G(2).
Answer: G(2) ≈

d. [3 points] Use an appropriate Taylor polynomial to compute the limit

lim
x→0+

g′(x)

x

Show your work carefully.
Answer:
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7. [13 points] The parts of this problem are unrelated.

a. [3 points] Consider the function

f(x) =

0 for x = 0
sinx

x
− cosx for x 6= 0

Find the Taylor series for f(x) centered at x = 0. Write your answer as a single sum
using sigma notation.

Answer: f(x) =

b. [4 points] Part of the graphs of
g(x), g′(x), g′′(x), and g′′′(x) are given to
the right.
Find the third-degree Taylor polynomial
for g(x) near x = 1.

1

-20

-16

-12

-8

-4

4

8

12

16

20

g(x)

g′(x)

g′′(x)

g′′′(x)

x

y

Answer:

c. [6 points] Find the exact value (in closed form) of the following series. You do not need
to justify your answers.

i. 0.1 +
0.01

2
+

0.001

3
+

0.0001

4
+ · · · =

ii.
π

2
− 3

π
+

18

π3
− 108

π5
+ · · · =

iii.
1

2
− 2e2 +

23e4

3!
− 25e6

5!
+ · · · =
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8. [12 points] The Resistance suddenly find themselves in a huge crisis! Chased by First
Order’s fleet, the Resistance members are deciding whether to evacuate their starship and
flee in small transports, or to remain and fight. At every moment throughout the debate,
every Resistance member is voting either to remain or flee, but members are continuously
changing their vote. Votes change in the following way:

• The number of Resistance members who change their vote from fleeing to remaining is
proportional to the number that is currently voting to flee

• The number of Resistance members who change their vote from remaining to fleeing is
proportional to the number that is currently voting to remain

• These both have the same constant of proportionality k, where k > 0.

a. [4 points] Let P be the total number of Resistance members, and let r(t) be the number
of members vote to remain t minutes after the debate begins. Write a differential
equation for r(t) which models the scenario.

Answer:
dr

dt
=

b. [3 points] Find all equilibrium solutions to your differential equation and determine
whether they are stable. Interpret your answer in the context of the problem.

c. [5 points] At a moment when 60% of the Resistance members wish to remain, Princess
Leia recovers, and the situation drastically changes. Now let R be the fraction of
Resistance members who wish to remain t seconds after Leia’s recovery, and suppose R
satisfies the differential equation

dR

dt
= −Ret.

Find an explicit formula for R(t). Show your work carefully.

Answer: R(t) =
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9. [7 points] After the first ever picture of a black hole was released by Event Horizon
Telescope (EHT), the public awaits an image of Sgr A*, the black hole at the Galactic
Center. Let t be the amount of time, in years, between now and when the EHT releases such
an image. The probability density function for t is given by

q(t) =

{
0 for t < 0

1/2n for n < t ≤ n+ 1, for each positive integer n.

Part of the graph of q(t) is given below.

−1 1 2 3 4

1/4

1/2

3/4

1

t

y = q(t)

a. [4 points] Let Q(t) be the cumulative distribution function for t. Carefully sketch the
graph of Q(t) on the domain −1 ≤ t ≤ 3.

−1 1 2 3

1/4

1/2

3/4

1

5/4

3/2

t

y = Q(t)

b. [3 points] Let Pn be the probability that EHT releases an image of Sgr A* within n
years, and pn be the probability that release time is in the nth year.
For each part below, circle “True” if the statement must be true and circle “False”
otherwise. No justification is necessary.

The sequence pn converges. True False

The sequence Pn converges to 0. True False

The series

∞∑
n=1

pn converges. True False
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10. [8 points] The following problems are unrelated.

a. [3 points] Which of the following are solutions to the differential equation y′ = x+ y?
Circle all correct answers.

i. y = −1− x+ 3ex

ii. y = 1− x+ 9ex

iii. y = −2− x+ ex

iv. y = −1− x+ 7ex

v. y = ex + x

vi. y = ex
2/2

vii. none of these

b. [3 points] Suppose

∞∑
n=0

an(x− 2)n is a power series with interval of convergence (−1, 5].

Which of the following statements must be true? Circle all that are correct.

i.
∞∑
n=0

3nan converges conditionally.

ii.
∞∑
n=0

3nan converges absolutely.

iii. lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 3

iv.
∞∑
n=0

an converges conditionally.

v.
∞∑
n=0

an converges absolutely.

vi.

∞∑
n=1

|an|
n

diverges.

vii. none of these

c. [2 points] For what value of β does

∫ β

π/18

√
sin2(3θ) + 9 cos2(3θ) dθ give the length of the

arc along the polar curve r = sin(3θ) in the first quadrant and outside the circle
r = 1/2? Circle the one best answer.

i. −π/18

ii. π/18 + 2π

iii. π − π/18

iv. π/2− π/18

v. π/3− π/18

vi. none of these
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“Known” Taylor series (all around x = 0):

sin(x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · · for all values of x

cos(x) =

∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · for all values of x

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ · · ·+ xn

n!
+ · · · for all values of x

ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
= x− x2

2
+
x3

3
− · · ·+ (−1)n+1xn

n
+ · · · for − 1 < x ≤ 1

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · for − 1 < x < 1

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · for − 1 < x < 1

Normal Distributions

The density function of a normal distribution with mean µ and standard deviation σ > 0 is

p(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2).

The standard normal distribution is the normal distribution with µ = 0 and σ = 1.


